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Abstract: Stock–recruitment (S–R) models are commonly fitted to S–R data with a least-squares method. Errors in
modeling are usually assumed to be normal or lognormal, regardless of whether such an assumption is realistic. A
Monte Carlo simulation approach was used to evaluate the impact of the assumption of error structure on S–R model-
ing. The generalized linear model, which can readily deal with different error structures, was used in estimating param-
eters. This study suggests that the quality of S–R parameter estimation, measured by estimation errors, can be
influenced by the realism of error structure assumed in an estimation, the number of S–R data points, and the number
of outliers in modeling. A small number of S–R data points and the presence of outliers in S–R data could increase the
difficulty in identifying an appropriate error structure in modeling, which might lead to large biases in the S–R
parameter estimation. This study shows that generalized linear model methods can help identify an appropriate error
distribution in S–R modeling, leading to an improved estimation of parameters even when there are outliers and the
number of S–R data points is small. We recommend the generalized linear model be used for quantifying
stock–recruitment relationships.

Résumé : On a l’habitude d’ajuster les modèles stock–recrutement (S–R) aux données S–R à l’aide d’une méthode des
moindres carrés. On présuppose que les erreurs de modélisation suivent une distribution normale ou lognormale, sans
tenir compte si cette présupposition est réaliste ou non. Une simulation de type Monte Carlo nous a permis d’évaluer
l’impact de la présupposition d’une structure d’erreur sur la modélisation S–R. Le modèle linéaire généralisé, qui peut
s’accommoder facilement de diverses structures d’erreur, a servi à estimer les paramètres. Notre étude laisse croire que
la qualité de l’estimation des paramètres S–R, reflétée dans les erreurs d’estimation, peut être influencée par le réalisme
de la structure d’erreur choisie pour l’estimation, par le nombre de données de S–R et le nombre de données aberrantes
dans la modélisation. Un petit nombre de données S–R et la présence de données aberrantes dans les données S–R peu-
vent rendre plus difficile l’identification d’une structure d’erreur appropriée dans la modélisation, ce qui peut mener à
de fortes distorsions dans l’estimation des paramètres S–R. Notre étude démontre que les méthodes reliées au modèle
linéaire généralisé permettent de définir une distribution d’erreur appropriée dans la modélisation S–R, ce qui mène à
une meilleure estimation des paramètres, même lorsqu’il y a des données aberrantes et qu’il y a peu de données S–R.
Nous recommandons l’utilisation du modèle linéaire généralisé pour quantifier les relations stock–recrutement.

[Traduit par la Rédaction] Jiao et al. 133

Introduction

Stock–recruitment (S–R) models are mathematical func-
tions that describe relationships between spawning stock
abundance and subsequent recruitment. Future recruitment,
which is essential for fisheries management, can be esti-
mated from current spawners using S–R models (Hilborn
and Walters 1992).

Large variations in recruitment have been observed for
many fish species (e.g., Myers and Barrowman 1996; Power
1996; Hinrichsen 2001). The variations tend to increase with
spawning stock biomass (Myers et al. 1995), which has led

to wide adoption of the assumption that recruitment at a
given level of spawning biomass follows a lognormal distri-
bution (Hilborn and Walters 1992). This has been used as an
alternative to the normal distribution (Hennemuth et al.
1980; Quinn and Deriso 1999; Hinrichsen 2001). The nor-
mal error distribution assumption is no longer widely used
in S–R analyses, although it tends to be more realistic if the
survival of individuals during their early life stages is den-
sity-independent and constant (Shelton 1992).

Error structure is an integral part of modeling (Carroll and
Ruppert 1984; Schnute 1991; Chen and Paloheimo 1998).
The impact of unrealistic assumptions of model error struc-
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ture on parameter estimation has been evaluated with vari-
ous fisheries models (Deriso et al. 1985; Bajdik and Schneider
1991; Cadigan and Myers 2001). Inappropriate error distri-
bution assumptions can cause inaccurate estimates of model
parameters, their variability, and the attained significance
level of the fitted model. In this study, using a Monte Carlo
simulation approach, we evaluated the importance of having
a proper error distribution assumption and the effectiveness
of using a generalized linear model in identifying a proper
error distribution in modeling S–R data.

The generalized linear model (GzLM) is a maximum like-
lihood based method that provides a systematic framework
by which parameters are estimated when the model error
structure belongs to the exponential family. We considered
several error structures in the exponential family, including
normal, lognormal, gamma, and Poisson distributions. The
likelihood of recruitment having normal or lognormal distri-
butions was discussed in Shelton (1992) and Fogarty (1993).
Lognormal and gamma distributions were used by Myers et
al. (1995). The Poisson distribution is considered appropri-
ate for counting data and for nonnegative and highly varied
data (Bajdik and Schneider 1991; White and Bennetts 1996)
and may be appropriate for recruitment.

Because the number of S–R data is often small (Hilborn
and Walters 1992) and outliers are likely to be present in the
S–R data (Chen and Paloheimo 1995; Hinrichsen 2001), the
role of sample size and outliers in identifying appropriate er-
ror structure in S–R modeling was also evaluated in the sim-
ulation study.

The theory of GzLM was developed in the 1970s (Nelder
and Wedderburn 1972) and later was expanded in theory and
application during the 1980s and 1990s (McCullagh and
Nelder 1983, 1989; Dobson 1990). The GzLM can be imple-
mented by various software such as GLIM (Numerical Algo-
rithms Group Ltd., Oxford, U.K.), SAS (SAS Institute Inc.,
Cary, N.C.), and SPLUS (MathSoft Engineering and Educa-
tion Inc., Cambridge, Mass.). MATLAB (Math Works Inc.,
Natick, Mass.) was used in this study.

Materials and methods

Data simulation
We used the Cushing (eq. 1), Ricker (eq. 2), and

Beverton–Holt (eq. 3) models (Quinn and Deriso 1999) as
examples in modeling S–R data:

(1) R = α βS

(2) R S= α βSe−

(3) R = α βS S/( )1 +

where α and β are two parameters to be estimated, and S and
R are the spawning stock biomass and its subsequent recruit-
ment, respectively. The Ricker and Beverton–Holt models
consider a density-dependent effect, but the Cushing model
does not. In practice, the choice of these models depends on
the data. In this study, we considered the Cushing model
first. Two scenarios were used in simulating S–R data with
eq. 1. One scenario was to randomly sample S data from
1000 to 10 000 values using a uniform distribution and then
calculate corresponding R values according to eq. 1 and an

assumed error structure, which includes normal, lognormal,
gamma, and Poisson functions (Table 1). The values of
2.012 and 0.857 were used for ln(α) and β, respectively, in
simulating the R data from the S data, which were taken
from the pink salmon (Oncorhynchus gorbuscha) fishery in
northern southeast Alaska (Quinn and Deriso 1999). For the
second scenario, the S–R data were simulated using actual S
data of pink salmon in northern southeast Alaska using the
four types of error distributions listed in Table 1 and the two
parameters for the pink salmon described above. The data
simulated in the first and second scenarios are referred to as
the first and second data sets, respectively, in this paper.

We then repeated the above approach for the Ricker and
Beverton–Holt models (i.e., eqs. 2 and 3). The values used
for the two parameters were ln(α) = 1.047 and β = 5.52 ×
10–5 in the Ricker model and ln(α) = 1.042 and β = 5.92 ×
10–5 in the Beverton–Holt model, also taken from the pink
salmon stock.

Generalized linear model (GzLM)
The generalized linear model is sometimes abbreviated as

GLM (McCullagh and Nelder 1989; Lindsey 1997; Myers et
al. 2001), GLIM (software distributed by Numerical Algo-
rithms Group), or GLZ (StatSoft Inc., Tulsa, Okla.). In this
paper, we use GzLM to differentiate the generalized linear
model from the general linear model (GLM) and the soft-
ware GLIM.

A GzLM has three components (McCullagh and Nelder
1989). One is the random component Y, which is a vector of
observations y having n components that are independently
distributed with means �. The second is the systematic com-
ponent, which is a specification for the vector � in terms of
a small number of unknown parameters β1, β2,…,βp . A lin-
ear predictor � is given by � =

=∑ X j jj

p β
1

, where X is the
model matrix or the covariates for observation Y. The third
component is the link between the random and systematic
components. It is often written as � �= g( ), where g is the
link function (McCullagh and Nelder 1989). In the case of
the GLM, � = � (i.e., identity link). Thus GLM is a special
case of GzLM. The likelihood function of Y can be written
as

(4) L f y
n

= ∏
1

( ; )θ

where f is the probability distribution function (pdf) which
depends on the parameter(s) θ. If the pdf is a member of the
exponential class, when Y is a discrete type, then we could
have

( ) ( ; ) exp[ ( ) ( ) ( ) ( )], , ,

,
,5

0

f y p K y s y q y a a aθ θ θ= + + =
=

1 2 3

e

�

lsewhere

The log-likelihood function is then

(6) LL = + +∑ ∑p K y S y nq
n

i

n

i( ) ( ) ( ) ( )θ θ
1 1

and where K y
n

i1∑ ( ) is a sufficient statistic for the parameter
θ and p(θ) is the canonical link for a distribution for which
the pdf is f(y; θ). Here, Y is recruitment R, X is spawning
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stock biomass S, and θ represents the parameters in the S–R
models.

The exponential family includes the normal, Poisson,
gamma, and other distributions. The link function � = g(�)
relates the mean of the response variable Y to the linear
combination of the Xi. Common choices of link functions
include identity, logarithmic, reciprocal, power, and logit
(McCullagh and Nelder 1989; The Math Works Inc. 2002).
The GzLM is flexible to incorporate different links and not
be limited to the canonical links. The links that we used in
this paper were based on the S–R model structure, because
we did not consider changing the S–R model form. The
choice of the link functions did not affect the assumption
about the distribution of Y in GzLM. The distributions, their
corresponding canonical links, and links used in this paper
are shown in Table 1. The GzLM model was used to esti-
mate the parameters given the link function � = g(�) accord-
ing to the maximum log-likelihood method (i.e., eq. 6). The
parameters were then used to calculate the expected value of
the response variable (i.e., recruitment) and then the residu-
als. Homogeneity of residuals was evaluated and used as a
criterion to determine if the model error structure was appro-
priate. When different model error assumptions were used in
a GzLM, the one that resulted in homogeneous residuals was
considered as the most appropriate one (McCullagh and
Nelder 1989). An example resulting from the application of
GzLM with the four error distributions to S–R data simu-
lated with a normal distributed error is shown (Fig. 1). This
example suggests that residuals tend to be homogeneous
when error distribution is correctly defined in the GzLM.

The GzLM parameter estimations for stock–recruitment
models

Cushing model
A log transformation in conjunction with a normal error

assumption is commonly used in fitting the Cushing model
to S–R data. This is equivalent to assuming that the untrans-
formed recruitment has a lognormal distribution. With the
lognormal transformation, the Cushing model (i.e., eq. 1)
can be rewritten as

(7) ln ln ln( ) ( ) ( )R S= + +α β ε

where ε has a normal distribution defined as N(0,σ2); ln(R)
is the dependent variable and ln(S) is the independent vari-
able in the GzLM. The identity link � = � is used, and the
choice of error is normal. The parameter estimates are the
same as those from the GLM model after the Cushing model
is log transformed (i.e., eq. 7).

For error distributions that are normal, gamma, and Pois-
son, we can rewrite the Cushing model as

(8) E R S S( ) ln( ) ( )= = +α β α βe ln

Model parameters are estimated based on the assumption of
the distribution of R. In the GzLM analysis, R is the depend-
ent variable and ln(S) is the independent variable. The log
link is used, and the error choice is normal, gamma, and
Poisson, respectively. The parameter estimates using a nor-
mal error distribution are the same as those estimated using
a nonlinear least-squares method.

Ricker model
When the lognormal distribution is assumed for the error

distribution of the Ricker model, eq. 2 can be rewritten as

(9) ln ln ln( ) ( ) ( )R S S= − + +α β ε

which is equivalent to

(10) R S S= −e eln( )α β ε

where ε follows N(0,σ2); ln(R) is the dependent variable,
negative S is the independent variable, and ln(S) is an offset
in the GzLM. The identity link � = � is used, and the choice
of error is normal. The parameter estimates are the same as
those from the GLM model after linearizing the Ricker
model. The commonly used linearization method, which can
be expressed as

(11) R S S/ = +−eα β ε

is likely to introduce estimation errors because variable S ap-
pears in both sides of the equation (Quinn and Deriso 1999).

For error distributions that are normal, gamma, and Pois-
son, the Ricker model can be written as

(12) E R S S( ) ( ) ( )= − +eln lnα β

Model parameters are estimated based on the assumption of
the distribution of R. R is the dependent variable, negative S
is the independent variable, and ln(S) is an offset in the
GzLM. The log link � = log(�) is used, and the choice of er-
ror is normal, gamma, and Poisson, respectively.

Beverton–Holt model
When the normal, gamma, or Poisson distribution is as-

sumed for the error distribution of the Beverton–Holt model,
eq. 3 can be rewritten as

(13) E R

S

( ) =
+

1
1

α
β
α

Model parameters are estimated based on the assumption of
the distribution of R. R is the dependent variable and 1/S is
the independent variable in the GzLM. The reciprocal link
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Links used in this paper

Distribution Canonical link
Cushing and
Ricker models

Beverton–Holt
model

Normal � = � � = log(�) � = 1/�
Lognormal (log-transformed data) � = � � = �
Gamma � = 1/� � = log(�) � = 1/�
Poisson � = log(�) � = log(�) � = 1/�

Table 1. The distributions, their corresponding canonical links, and links used in this paper.
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� = 1/� is used, and the choice of error is normal, gamma,
and Poisson, respectively.

For error distributions that are lognormal, the
Beverton–Holt model can be written as

(14) ln ln( )R
S

S
=

+
+α

β
ε

1

= + − + +ln ln ln( ) ( ) ( )α β εS S1

where ε is the error term following N(0,σ2). Because of the
nonlinear parameters in the above equation, the code and
method used to get the parameter estimate are complicated
and approximated when using GzLM. Equation 14 can be
regarded as a nonlinear equation with a normally distributed
error structure, where ln(R) is the response variable and S is
the independent variable. Considering the fact that the pa-
rameter estimate using GzLM in eq. 14 equals that using the
nonlinear least-squares estimate, a nonlinear least-squares
method was used in solving this equation instead of GzLM.

Simulation design
The following procedure was used in the simulation:

(i) simulate S–R data sets using the Cushing model for error
scenarios (listed in Table 2) with the total number of obser-
vations being 10, 20, and 40; and (ii) simulate S–R data sets
with outliers by adding atypical errors to 10%, 20%, and
40% of the data, with the number of observations being 40.
Both of the S–R data sets discussed previously in the Data
simulation section were used in simulating data with and
without outliers. The same approach was then applied to the
Ricker model. The combination of three models (Cushing,
Ricker, and Beverton–Holt), two data sets (randomly drawn

S data and true S data for the pink salmon), four error distri-
butions used in simulating the S–R data (normal, lognormal,
gamma, and Poisson), four error distributions assumed in the
GzLM for parameter estimation (normal, lognormal, gamma,
and Poisson), three sample sizes (10, 20, and 40 S–R obser-
vations), and three different levels of outlier contaminations
(10%, 20%, and 40%) at the sample size of 40 resulted in
480 simulation scenarios in total evaluated in this study.
When adding outliers in the simulation study, if 10% of out-
liers were added, 90% of S–R data with the supposed model
error structure were first simulated and then another 10% of
the outliers with another model error structure were simu-
lated. Finally, the 90% common data and 10% outliers were
added together before the generalized linear model was used
to estimate the parameters. For each simulation scenario,
1000 simulations were run to derive the stable results.

Departure of the estimated parameters from the true val-
ues was measured by the relative estimation bias (REB;
eq. 15), relative estimate error (REE; eq. 16), and root mean
square error (RMSE; eq. 17):

(15) REB 100(%)

*

=











 −

×
∑β β

β

i

N

N
1

(16) REE 100(%)

*

=
−

×
∑ β β

β

i

N

N
1
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Fig. 1. An example for showing the homogeneity and heterogeneity of residual distributions. Pearson residuals were used. The model
error distribution used in simulating the stock–recruitment data is normal; the model error distributions used in the generalized linear
model for the parameter estimation are (a) normal, (b) lognormal, (c) gamma, and (d) Poisson.
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(17) RMSE 1

2

=
−





















∑ ( )*

/
N

i

N

β β
1 2

where βi
* is the estimated parameter value in the ith simula-

tion, N is the number of simulations, and β is the true param-
eter value. The smaller the REB, REE, and RMSE values,
the better the estimation approach performs.

Quantification of residual’s homogeneity
Pearson residuals of the model fitting were calculated for

each simulation scenario. Pearson residuals are the differ-
ences between observed and predicted values, standardized
(divide by the estimated standard deviation of the fitted
value) to make their variance (theoretically) constant. If the
error distribution assumed in the estimation was consistent
with the error distribution used in simulating the S–R data,
then a plot of resultant Pearson residuals should show con-
stant variances. Thus, to determine if the residuals are homo-
geneous, one can look at the residual diagnostic plot. A
visual inspection of residual diagnostic plots is commonly
used in evaluating the residual homogeneity, although the
approach may be subjective, particularly when sample sizes
are small. In this study, because 1000 simulations were run
for each scenario to derive stable results, direct observation
was laborious. Thus, we used the following quantitative
method to evaluate the homogeneity of the residuals. (i) Re-
gress the Pearson residual value (r) and the model predicted
value ( �R), i.e.,

(18) r a b R= +1 1
�

Estimate the p value for b1 to determine if it was signifi-
cantly different from zero; α = 10% was used. (ii) Regress

the absolute Pearson residual value (r2) and the model pre-
dicted value ( �R), i.e.,

(19) r a b R2 2 2= + �

Estimate the p value for b2 to determine if it was signifi-
cantly different from zero; α = 10% was used. (iii) If both of
the estimated p values were larger than α = 10%, we re-
garded the residuals as homogeneous, otherwise we regarded
the residuals as not homogeneous. Many of the residuals
show a right or left triangular-shaped pattern symmetric about
the x axis when an inappropriate model error structure was
used; therefore, we double-checked this situation by using
both residuals and absolute value of residuals in the regres-
sion. This proposed method, referred hereafter as the regres-
sion method, was compared with the commonly used method,
which involves visual examination of residual homogeneity,
in 100 simulations to determine if both methods derived
consistent conclusions in evaluating the residual homogene-
ity.

Results

The efficiency of the regression method in identifying the
residual homogeneity was influenced by sample size (Ta-
ble 2). When the sample size was 10, the percentage of the
simulations with homogeneous residuals was 81% on aver-
age. This increased slightly with an increase in sample size
(averaged 84% and 89% for sample sizes of 20 and 40, re-
spectively; Table 2). A comparison of the regression method
with the commonly used visual-checking method for the re-
sidual homogeneity suggests that the proposed regression
method effectively identified the simulations that had homo-
geneous residuals.

When the error distributions used in the GzLM analysis
were the same as those used in simulating S–R data, percent-
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Simulations with homogeneous residuals (%)

Model error distribution Sample size = 10 Sample size = 20 Sample size = 40

in simulating
S–R data

in GzLM
estimation

Regression
method

Visual
checking

Regression
method

Visual
checking

Regression
method

Visual
checking

Normal Normal 87 88 93 88 92 87
Lognormal 70 68 40 48 10 16
Gamma 72 70 43 47 10 13
Poisson 83 77 80 80 40 40

Lognormal Normal 82 57 65 40 20 18
Lognormal 97 75 85 75 82 87
Gamma 88 72 82 77 85 93
Poisson 87 63 75 58 57 50

Gamma Normal 82 47 57 43 33 27
Lognormal 80 72 87 77 70 70
Gamma 83 78 87 83 70 70
Poisson 83 60 78 62 73 58

Poisson Normal 83 62 70 62 43 40
Lognormal 87 60 72 52 53 58
Gamma 85 63 75 47 53 58
Poisson 88 67 80 77 93 87

Note: The results derived for different sample sizes (10, 20, and 40) are compared. GzLM, generalized linear model; S–R, stock–recruitment.

Table 2. Comparison of the regression method proposed in this paper with the commonly used visual checking method in identifying
the residual homogeneity for the 100 simulations (in this study, the Cushing model was used).
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ages of the simulations that had homogeneous residuals in-
creased with an increase in sample size (Table 3). The REEs
and RMSEs for α and β tended to decrease with increasing
sample size (Fig. 2; Table 3). The REBs of α and β for the
sample size of 40 tended to be larger than those for the sam-
ple size of 20, but still smaller than for the sample size of
10. Because the REB is the difference between the mean pa-
rameter estimate in total simulation runs and the true value
divided by the true value, the variance among the simulation
runs was hidden. The REB estimate is unsteady compared
with the REE and RMSE estimates, which accumulate error
in every simulation run. (We did not show the REE esti-
mates in the tables; we only show it in Fig. 2 as an exam-
ple.)

When the error distributions used in the GzLM analysis
differed from those used in simulating S–R data, percentages
of the simulations with homogeneous residuals became smaller
with an increase in sample size (Table 4). This was different
from the observations made when model error distributions
used in the GzLM analysis were the same as those used in
simulating S–R data. The REBs of α and β increased with an
increase in sample sizes when normal errors were used in
simulating S–R data. For other errors used in simulating
data, they decreased as the sample size increased (Table 4).
The RMSEs of α and β decreased with increasing sample
size.

A comparison of Tables 3 and 4 indicates that percentages
of the simulations with homogeneous residuals were always
higher and REBs and RMSEs of α and β were always lower
when the error assumptions used in the GzLM were the
same as those used in simulating S–R data compared with
those derived in the simulations when the model error distri-
butions in the GzLM were not the same as the ones used in
simulating data (Tables 3 and 4).

Different error assumptions in the GzLM yielded different
estimates for the model parameters. Parameters estimated
using lognormal and gamma distributions were similar, but
parameters estimated using normal distribution in the GzLM
were different from those estimated using lognormal and
gamma distributions in the GzLM. Parameters estimated us-
ing a Poisson distribution tended to have values between

those estimated using the normal error distribution versus log-
normal and gamma distributions. Because this is a simulation
study, we did not show the parameter estimate in every simula-
tion. The trend of the mean error in total simulations can be ob-
served from the REE and RMSE estimates (Fig. 2; Tables 3
and 4).

When the second S–R data (see Data simulation section)
were used for the Cushing model, percentages of the simula-
tions with homogeneous residuals were higher when the er-
ror distributions used in the GzLM were the same as those
used in simulating S–R data (Table 5). Parameters estimated
using the lognormal and gamma distributions were similar.
Parameters estimated using the normal distribution in the
GzLM differed from those estimated using the lognormal
and gamma distributions. Parameters estimated using the
Poisson distribution in the GzLM had values between those
estimated using normal error and lognormal and gamma dis-
tributions in the GzLM. When the error distribution used in
the GzLM was the same as that used in simulating S–R data,
the percentages of the simulations with homogeneous resid-
uals were higher and the REBs and RMSEs of α and β were
smaller, and vice versa. This was consistent with the results
derived for the first set of data, which had S values randomly
drawn from 1000 to 10 000 values.

For the first set of data (randomly drawn S data) with out-
liers, when the error distributions used in the GzLM were
the same as those used in simulating S–R data, the percent-
ages of the simulations with homogeneous residuals decreased
and the REBs and RMSEs of α and β increased with an in-
crease in the number of outliers (Table 6). When the error
distributions used in the GzLM were not the same as those
used in simulating S–R data, the percentages of the simula-
tions with homogeneous residuals increased with an increase
in the number of outliers, if error distributions used in simu-
lating S–R data were normal and error distributions used in
the GzLM were lognormal and gamma. The same result
could also be observed when the error distributions used in
simulating S–R data were lognormal, gamma, and Poisson
and the model errors used in the GzLM were normal. For
other combinations of the distributions in simulating data
and GzLM analyses, the percentages of simulations with ho-
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Model error distribution
in simulating S–R data

No. of
observations

Simulations with
homogeneous residuals (%)

REB for
ln(α) (%)

REB for
β (%)

RMSE
for ln(α)

RMSE
for β

Normal 10 71.9 0.15 0.04 0.4398 0.0518
20 79.1 0.02 0.01 0.2989 0.0351
40 80.4 0.02 0.05 0.2106 0.0248

Lognormal 10 74.3 6.90 1.93 2.9511 0.3585
20 79.4 0.01 0.19 1.9812 0.2413
40 80.8 2.21 0.60 1.3260 0.1618

Gamma 10 71.3 0.61 0.15 0.4516 0.0542
20 73.5 0.73 0.21 0.2915 0.0351
40 79.1 0.37 0.10 0.1860 0.0224

Poisson 10 73.6 0.026 0.008 0.0724 0.0086
20 78.5 0.026 0.008 0.0491 0.0059
40 80.6 0.008 0.002 0.0342 0.0041

Note: The Cushing model and the first set of data, which had S values randomly drawn from 1000 to 10 000 values, were used in the simulation. Rela-
tive estimate bias (REB) and root mean square error (RMSE) for parameters are shown.

Table 3. Summary of the simulations in which the model error distributions used in the generalized linear model analyses were the
same as those used in simulating stock–recruitment (S–R) data.
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mogeneous residuals decreased with an increasing number
of outliers (Table 7). The REBs and RMSEs of α and β in-
creased with an increase in the number of outliers in most
cases (Table 7). Similar conclusions could be obtained when
outliers were present in the second set of data simulated
based on pink salmon S data (Tables 8 and 9).

When the Ricker and Beverton–Holt models were applied
to data simulated under different scenarios, the results de-
rived were consistent with those described above for the
Cushing model. For brevity, the results for those two models
are not shown in this paper.

Discussion

The regression method proposed for checking the residual
homogeneity was effective in identifying homogeneous dis-

tributions of residuals. However, the effectiveness decreased
with sample size. This was consistent with the fact that vi-
sual observation for residual homogeneity was difficult
when sample sizes were small. This suggests that the regres-
sion method that we used in checking residual homogeneity
of a large number of simulations was effective. However, we
would suggest using the visual observation method in S–R
modeling when there is only one set of residuals output.

The simulation results show that GzLM can help identify
an appropriate model error distribution for parameter estima-
tion through a residual homogeneity analysis. In most cases
of the simulation, the true model error distribution used in
the GzLM provided the highest percentage of simulation
runs with homogeneous residuals. According to the simula-
tion, this (i.e., the use of an appropriate error distributions in
the GzLM) can improve the parameter estimation.
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Fig. 2. Relative estimation error (REE) for the two parameters (a) ln(α) and (b) β in the Cushing model in 1000 simulation runs using
different sample sizes in the simulation study. The simulated model error distribution is normal; the model error distributions used in
the parameter estimates are normal (solid line), lognormal (dashed–dotted line), gamma (dashed line), and Poisson (dotted line).
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Model error distribution

in simulating
S–R data in GzLM

No. of S–R
observations

Simulations with
homogeneous residuals (%)

REB for
ln(α) (%)

REB for
β (%)

RMSE for
ln(α)

RMSE
for β

Normal Lognormal 20 26.3 2.57 0.70 0.4096 0.0486
40 5.0 2.94 0.80 0.3033 0.0360

Gamma 20 24.7 0.91 0.26 0.3999 0.0474
40 4.6 0.84 0.23 0.2916 0.0346

Poisson 20 55.5 0.31 0.09 0.3216 0.0378
40 34.9 0.47 0.13 0.2315 0.0273

Lognormal Normal 20 37.4 24.6 8.20 11.2407 1.2923
40 13.1 5.25 3.02 2.2124 0.2666

Gamma 20 81.8 4.39 0.45 2.0394 0.2480
40 85.8 2.43 0.94 1.4105 0.1724

Poisson 20 63.2 7.89 0.55 2.2546 0.2733
40 43.9 2.72 0.85 1.5502 0.1890

Gamma Normal 20 44.1 1.13 0.32 0.3392 0.0406
40 17.8 0.20 0.05 0.2302 0.0277

Lognormal 20 73.7 1.09 0.28 0.2924 0.0352
40 64.2 0.09 0.01 0.1861 0.0224

Poisson 20 72.6 0.85 0.24 0.2935 0.0353
40 67.7 0.38 0.10 0.1915 0.0231

Poisson Normal 20 58.6 0.041 0.012 0.0539 0.0064
40 36.6 0.027 0.008 0.0367 0.0044

Lognormal 20 58.5 0.046 0.013 0.0525 0.0063
40 39.4 0.009 0.002 0.0371 0.0044

Gamma 20 59.1 0.026 0.008 0.0525 0.0063
40 37.9 0.016 0.005 0.0371 0.0044

Note: The Cushing model and the first set of data, which had S values randomly drawn from 1000 to 10 000 values, were used in the simulation. Rela-
tive estimate bias (REB) and root mean square error (RMSE) for parameters are shown. GzLM, generalized linear model; S–R, stock–recruitment.

Table 4. Summary of the simulations in which the model error distributions used in the generalized linear model analyses were not the
same as those used in simulating stock–recruitment (S–R) data.

Model error distribution

in simulating
S–R data in GzLM

Simulations with
homogeneous residuals (%)

REB for
ln(α) (%)

REB for
β (%)

RMSE for
ln(α)

RMSE
for β

Normal Normal 82.3 0.01 0.01 0.2144 0.0258
Lognormal 26.9 2.18 0.59 0.3486 0.0425
Gamma 31.1 0.37 0.10 0.3408 0.0415
Poisson 59.6 0.01 0.01 0.2451 0.0296

Lognormal Normal 37.1 7.86 0.80 2.8999 0.3556
Lognormal 80.8 0.64 0.21 1.8501 0.2309
Gamma 86.1 6.58 0.27 1.9416 0.2418
Poisson 77.0 12.22 1.93 2.1647 0.2682

Gamma Normal 32.8 0.43 0.12 0.3286 0.0405
Lognormal 73.8 0.67 0.16 0.2644 0.0328
Gamma 75.6 0.22 0.06 0.2636 0.0327
Poisson 82.5 0.19 0.05 0.2639 0.0327

Poisson Normal 53.0 0.011 0.003 0.0470 0.0058
Lognormal 39.9 0.002 0.002 0.0472 0.0058
Gamma 42.6 0.030 0.007 0.0472 0.0058
Poisson 83.3 0.020 0.006 0.0417 0.0051

Note: Relative estimate bias (REB) and root mean square error (RMSE) for parameters were shown. GzLM, generalized linear model; S–R,
stock–recruitment.

Table 5. Summary of the simulations in which the Cushing model and the second set of data that had true S values of pink salmon
were used in the simulation.
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This study suggests that the number of S–R data can greatly
influence the effectiveness of identifying correct error distri-
butions in the GzLM analyses and estimation errors. A small
number of S–R data is likely to lead to low effectiveness in
identifying homogeneous residuals and large estimation er-

rors in S–R modeling. Thus, we should be cautious in using
the GzLM when analyzing a small number of S–R data.

The presence of outliers can also impact a GzLM analysis
in identifying a correct error distribution. When the number
of outliers was 10% of the data, the percentage of simulation
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Model error
distribution in
simulating S–R data

Distribution
that outliers
follow

Data being
outliers (%)

Simulations with
homogeneous
residuals (%)

REB for
ln(α) (%)

REB for
β (%)

RMSE
for ln(α)

RMSE
for β

Normal Lognormal 10 66.8 1.77 0.67 0.7189 0.0866
20 58.4 2.28 0.97 1.1859 0.1477
40 43.4 5.83 2.29 1.5351 0.1852

Lognormal Normal 10 80.0 4.08 1.17 1.2193 0.1485
20 81.6 0.36 0.09 1.1835 0.1444
40 79.5 0.52 0.16 0.9844 0.1203

Gamma Normal 10 55.2 0.14 0.03 0.2030 0.0244
20 47.9 1.37 0.38 0.2273 0.0273
40 29.0 0.16 0.04 0.2332 0.0278

Poisson Normal 10 68.4 0.12 0.03 0.0780 0.0092
20 69.5 0.13 0.04 0.1044 0.0123
40 59.5 0.14 0.04 0.1499 0.0177

Note: The Cushing model and the first set of data, which had S values randomly drawn from 1000 to 10 000 values, were used in the simulation. Out-
liers were added and the sample size was 40. Relative estimate bias (REB) and root mean square error (RMSE) for parameters are shown.

Table 6. Summary of the simulation in which the model error distributions used in the generalized linear model analyses were the
same as those used in simulating stock–recruitment (S–R) data.

Model error distribution

in simulating
S–R data in GzLM

Data being
outliers (%)

Simulations with
homogeneous residuals (%)

REB for
ln(α) (%)

REB for
β (%)

RMSE
for ln(α)

RMSE
for β

Normal Lognormal 10 56.6 1.21 0.31 0.4658 0.0563
20 69.8 1.69 0.46 0.6479 0.0788

Gamma 10 56.0 1.03 0.12 0.5111 0.0619
20 68.8 0.15 0.31 0.7147 0.0870

Poisson 10 70.4 0.25 0.10 0.5843 0.0664
20 68.3 0.38 0.24 0.7996 0.0972

Lognormal Normal 10 18.9 3.21 0.51 1.9861 0.2385
20 22.0 1.38 1.66 1.9122 0.2305

Gamma 10 83.2 7.83 0.72 1.2994 0.1572
20 83.0 4.04 0.20 1.2773 0.1557

Poisson 10 49.1 9.25 1.13 1.4226 0.1724
20 54.6 4.76 0.01 1.4020 0.1704

Gamma Normal 10 23.3 0.19 0.05 0.2329 0.0279
20 30.6 1.20 0.33 0.2283 0.0273

Lognormal 10 56.4 0.78 0.19 0.2042 0.0245
20 47.0 2.17 0.58 0.2325 0.0278

Poisson 10 75.5 0.17 0.04 0.2001 0.0241
20 78.1 1.15 0.32 0.2100 0.0252

Poisson Normal 10 64.5 0.16 0.04 0.0730 0.0086
20 71.2 0.13 0.04 0.0952 0.0112

Lognormal 10 50.3 0.33 0.09 0.1017 0.0121
20 42.4 0.34 0.09 0.1347 0.0160

Gamma 10 47.6 0.08 0.02 0.0983 0.0117
20 42.4 0.11 0.03 0.1317 0.0157

Note: The Cushing model and the first set of data, which had S values randomly drawn from 1000 to 10 000 values, were used in the simulation. Out-
liers were added and the sample size was 40. Relative estimate bias (REB) and root mean square error (RMSE) for parameters are shown. GzLM, gener-
alized linear model.

Table 7. Summary of the simulation in which the model error distributions used in the generalized linear model analyses were not the
same as those used in simulating stock–recruitment (S–R) data.
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runs with homogeneous residuals was highest when the cor-
rect error distributions were used in the GzLM analysis.
When the number of outliers increased to 40%, the percent-
ages of homogeneous residuals was no longer highest when
the correct error distributions were used in the GzLM analy-
sis. The normal error distribution tended to be more sensi-

tive to outliers compared with the lognormal and gamma dis-
tributions. This study shows that even when the GzLM is less
effective in identifying the correct error distribution with an
increase in the number of outliers, the model error distribu-
tion used in the GzLM showing the highest percentage of
simulation runs with homogeneous residuals usually pro-
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Model error
distribution in
simulating S–R data

Distribution
that outliers
follow

Data being
outliers (%)

Simulations
homogeneous
residuals (%)

REB for
ln(α) (%)

REB for
β (%)

RMSE
for ln(α)

RMSE
for β

Normal Lognormal 10 64.3 0.02 0.18 0.3168 0.0395
20 40.2 18.44 11.32 3.1441 0.3871
40 21.8 27.32 8.55 2.9112 0.3597

Lognormal Normal 10 77.4 0.60 0.18 1.8214 0.2266
20 67.3 4.57 1.29 1.5377 0.1895
40 26.7 1.99 0.57 1.3729 0.1690

Gamma Normal 10 76.2 0.22 0.06 0.2616 0.0323
20 70.5 0.10 0.02 0.2411 0.0297
40 61.0 0.63 0.18 0.2321 0.0286

Poisson Normal 10 80.2 0.07 0.02 0.0590 0.0074
20 69.1 0.08 0.02 0.1134 0.0142
40 48.2 0.08 0.03 0.1209 0.0152

Note: The Cushing model and the second set of data that had true S values of pink salmon were used in the simulation. Outliers were added in simu-
lating the data. Relative estimate bias (REB) and root mean square error (RMSE) for parameters are shown.

Table 8. Summary of the simulation in which the model error distributions used in the generalized linear model analyses were the
same as those used in simulating stock–recruitment (S–R) data.

Model error distribution

in simulating
S–R data in GzLM

Data being
outliers (%)

Simulations with
homogeneous residuals (%)

REB for
ln(α) (%)

REB for
β (%)

RMSE
for ln(α)

RMSE
for β

Normal Lognormal 10 83.2 1.71 0.43 0.5946 0.0760
20 53.1 5.36 1.57 1.1047 0.1408

Gamma 10 84.3 7.05 2.21 0.6534 0.0840
20 53.5 18.04 5.66 1.2074 0.1549

Poisson 10 73.8 4.05 1.33 0.4979 0.0641
20 40.1 25.31 7.74 2.0522 0.2580

Lognormal Normal 10 80.0 11.95 2.16 2.9611 0.3629
20 86.1 41.40 10.64 1.3247 0.1527

Gamma 10 82.1 14.52 2.72 1.9505 0.2412
20 73.4 26.27 6.28 1.7398 0.2113

Poisson 10 81.1 19.76 4.27 2.1775 0.2689
20 85.7 35.73 9.03 1.4945 0.1772

Gamma Normal 10 78.4 0.27 0.08 0.3213 0.0395
20 83.0 0.07 0.03 0.1981 0.0241

Lognormal 10 74.4 0.72 0.18 0.2617 0.0323
20 69.3 0.67 0.16 0.2416 0.0297

Poisson 10 84.2 0.09 0.03 0.2575 0.0318
20 85.7 0.06 0.02 0.2004 0.0245

Poisson Normal 10 65.7 0.14 0.04 0.0560 0.0068
20 59.4 0.11 0.03 0.1596 0.0197

Lognormal 10 87.7 0.05 0.02 0.0673 0.0085
20 82.7 0.11 0.04 0.0870 0.0111

Gamma 10 89.6 0.01 0.01 0.0671 0.0085
20 82.5 0.03 0.01 0.0866 0.0110

Note: The Cushing model and the second set of data that had true S values of pink salmon were used in the simulation. Outliers were added when sim-
ulating the data. Relative estimate bias (REB) and root mean square error (RMSE) for parameters are shown. GzLM, generalized linear model.

Table 9. Summary of the simulation in which the model error distributions used in the generalized linear model analyses were not the
same as those used in simulating stock–recruitment (S–R) data.
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vides better parameter estimates with smaller REB and
RMSE. We present an example (Fig. 3) illustrating the
changes in estimation errors for ln(α) and β when different
percentages of data were outliers. This suggest that the ap-
propriate model error distribution may not be the underlying
true error distribution because of the existence of outliers.

This study suggests that if the model error distribution
used in simulating S–R data follows the Poisson distribu-
tion, then the parameters estimated using different error
distributions in the GzLM have smaller differences. Thus, a
Poisson-distributed error in S–R data is less sensitive to sam-
ple size, outliers, and choice of error distributions in the
GzLM. The use of the Poisson distribution in the parameter
estimation also showed robustness with respect to misspeci-
fication of error structure, small sample size, and outliers.

For example, when the error distribution used in simulating
S–R data was normal and the data were contaminated with
lognormally distributed outliers, the Poisson error distribu-
tion used in the GzLM analysis provided the highest per-
centage of simulation runs with homogeneous residuals and
better parameter estimates. Thus, we recommend using the
Poisson distribution in a GzLM analysis of S–R data.

The simulated results did not show a clear difference when
different S–R models were used. Because this is a simulation
study and the data sets are based on “true” parameters with
random errors, the performance of the models is difficult to
compare.

We suggest the GzLM method be used to quantify S–R
data relationships. The GzLM provides a convenient and ef-
fective way to evaluate and identify the appropriate model
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Fig. 3. Relative estimation error (REE) for the two parameters (a) ln(α) and (b) β in the Cushing model in 1000 simulation runs add-
ing different percentages of outliers in the stock–recruitment data. The number of stock–recruitment observations used in the simula-
tion is 40. The model error distribution used in simulating stock–recruitment data is normal; the model error distributions used in the
generalized linear model for the parameter estimation are normal (solid line), lognormal (dashed–dotted line), gamma (dashed line),
and Poisson (dotted line).
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error distributions for a given set of data and models, lead-
ing to improved parameter estimation.
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