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Abstract

Cox-Rogers, S., Hume, J.M.B., Shortreed, K.S., and Spilsted, B. A risk assessment model for Skeena
River sockeye salmon. Can. Manuscr. Rep. Fish. Aquat. Sci. 2920: viii + 60 p.

This paper presents a risk assessment simulation model for Skeena River sockeye salmon harvested in
marine and in-river fisheries in northern British Columbia. This paper also provides production and stock
status background for Skeena River sockeye lakes. The model can be used to generate probabilistic
statements about stock-specific catch, escapement, harvest rates, and fishery values under different or
optional fishing scenarios. The model can also be used to evaluate re-building and recovery options.

The model utilizes a stock and recruitment “engine” for predicting future production from specific
escapements. The stock and recruitment parameters (productivity and capacity) used in the model are
inferred from photosynthetic rate (PR) assessments of lake rearing capacity for 29 sockeye lakes (stocks) in
the Skeena River drainage. User-supplied harvest rates are applied to estimated run-timing proportions (by
stock) to calculate catch and escapement in each fishery. The model is spreadsheet-based and is run
stochastically as a Monte Carlo simulation. We consider the simulation approach outlined in this paper to
be a starting point for further work and development.

Résumeé

Cox-Rogers, S., Hume, J.M.B., Shortreed, K.S., and Spilsted, B. A risk assessment model for Skeena
River sockeye salmon. Can. Manuscr. Rep. Fish. Aquat. Sci. 2920: viii + 60 p.

Ce document décrit un modele de simulation du risque portant sur les stocks de saumon rouge de la
Skeena péchés dans les eaux marines et fluviatiles du Nord de la Colombie-Britannique. 1l donne
également un apercu de la productivité et de I’état général des stocks dans les lacs ou transite le saumon
rouge de la Skeena. Ce modéle peut étre utilisé pour produire des bilans de probabilité concernant les
prises monospécifiques, les échappements, les taux de récolte et la valeur d’une pécherie donnée selon
divers scénarios d’activité de péche. Le modele peut également servir a I’évaluation des stratégies de
reconstruction et de rétablissement des stocks.

Le modéle utilise un « moteur » de calcul des stocks et du recrutement pour prédire la productivité
future de certaines échappées. Les parametres de stock et de recrutement (productivité et capacité) sont
inférés de I’évaluation des taux de photosynthese (TP) établis pour vingt-neuf lacs de transit des stocks de
saumon rouge du bassin de la Skeena. Les taux de capture fournis par les usagers sont appliqués aux
proportions de remonte estimatives (par stock) afin de calculer les prises et les échappées pour chaque
pécherie. Le modéle est formalisé sous forme de tableur et utilisé stochastiquement comme simulation
Monte Carlo. Nous considérons la méthode de simulation décrite dans ce document comme un point de
départ pour d’autres travaux d’études.



1.0 Introduction

This paper presents a risk assessment simulation model for Skeena River sockeye salmon
harvested in marine and in-river fisheries in northern British Columbia. The model generates probabilistic
statements about stock-specific catch, escapement, harvest rates and fishery values under different fishing
regimes. The model utilizes stock and recruitment production relationships derived from photosynthetic
rate (PR) assessments of lake rearing capacity for 29 sockeye lakes (stocks) in the Skeena River drainage
(Shortreed et al; 2001, Cox-Rogers et al 2004). User-supplied harvest rates are applied to estimated run-
timing proportions (by stock) to calculate catch and escapement in each fishery. The model is spreadsheet-
based and is run stochastically as a Monte Carlo simulation. The simulation model component described in
this paper comes from a draft PSARC working paper S2003-09 (Cox-Rogers 2003) which was
subsequently split into Cox-Rogers et al 2004 describing just the production dynamics of Skeena sockeye
lakes, and this document which also outlines the production dynamics of Skeena sockeye lakes but also
includes the simulation model itself. For this reason, readers will notice that all of the production tables in
this document simply duplicate those in Cox-Rogers et al 2004. As well, references to the model described
in this paper also appear in various summary memos (Cox-Rogers, memos to file, Prince Rupert B.C.)
outlining internal Wild Salmon Policy evaluations from 2003-2005.

1.1 Overview of Skeena River Sockeye Lakes

Skeena River sockeye lakes are distributed from the coast to the high interior regions and vary in
size and productivity (Fig. 1). The Skeena system has one very large sockeye rearing lake (Babine-
Nilkitkwa) and approximately 28 smaller ones (Table 1). Babine Lake comprises about 67% of the total
Skeena sockeye rearing area (Shortreed et al. 1998). Babine Lake was enhanced in the late 1960’s and
early 1970’s with the development of the Pinkut Creek and Fulton River spawning channels (West and
Mason 1987). Both wild and enhanced sockeye populations rear in Babine Lake and production dynamics
for both components have been extensively studied (Levy and Hall 1985; Wood et al. 1998). Tagging
studies (Smith and Jordan 1973) identified three distinct runs of sockeye into Babine Lake (early, mid, and
late-timing). Wood et al. (1998) concluded that these runs were sub-populations rather than distinct
populations because they are connected by relatively high rates of gene flow. Wood et al. (1998) provide
the most recent assessment of sockeye production dynamics for Babine Lake.

In addition to Babine Lake, 10 other Skeena nursery lakes are considered important sockeye
producers: Alastair, Bear, Johanson, Kitsumkalum, Kitwanga, Lakelse, Morice, Morrison, Sustut, and
Swan (Shortreed et al 1998). These 10 lakes comprise about 29% of the total Skeena sockeye rearing area
(Shortreed et al 1998). There are also 18 other smaller Skeena lakes that are utilised by juvenile sockeye:
Aldrich, Asitka, Atna, Azuklotz, Club, Damshilgwit, Dennis, Johnston, Kluatantan, Kluayaz, McDonell,
Motase, Sicintine, Stephens, Slamgeesh, Spawning, Maxan, and Bulkley. These smaller lakes comprise
about 4% of the total Skeena nursery area. Several of the smaller lakes are part of larger lake systems
within the same drainage watershed. The level of gene flow between the sockeye populations homing to
each of these lakes is not known. Co-joined lake systems include Aldrich-Dennis-McDonnell in the
Zymoetz River drainage, Azuklotz-Bear in the Bear River drainage, Atna-Morice in the Morice River
drainage, Club-Stephens-Swan in the Kispiox River drainage, the Damshilgwit-Slamgeesh in the
Slamgeesh River drainage, and the Morrison-Babine-Nilkitkwa in the Babine River drainage.

Skeena sockeye salmon migrate seaward from April through June predominantly as age-1 smolts
having spent one full summer in the rearing lakes. Some populations have significant proportions of age-2
and some age-3 smolts (e.g. Morice Lake). Most returning adults are age-4 or age-5 and pass through
southern southeast Alaska waters and into the terminal Skeena fishing areas from mid-June through late
August. The stocks do not share the same migration timing and are therefore differentially impacted by
fisheries primarily directed on the productive mid-late timed Babine enhanced component (peaking in the
third week of July). Spawning takes place in lake tributary streams and along lake shorelines from late
August through early October.



Skeena River sockeye are caught in a complex array of mixed-stock fisheries in southern
southeast Alaska, northern British Columbia (Statistical Areas 1 through 5), and in First Nations food,
social, and ceremonial fisheries (FSC) and escapement surplus to spawning requirement fisheries (ESSR)
within the Skeena River itself. Sprout and Kadowaki (1987) provide a historical review of the marine
commercial fishery and its management. The aggregate escapement goal for Skeena River sockeye
salmon is 900,000 plus 150,000 for native food, social, and ceremonial purposes, although management
has typically aimed to increase both escapement and exploitation when abundance is high. A daily in-
season management model (Cox-Rogers 1994) is used to develop fishing plans and to manage the Area
3/4/5 fishery. In-season sockeye escapement into the Skeena River is estimated by a gillnet test fishery
located at Tyee near the escapement boundary (Cox-Rogers and Jantz 1993).

2.0 Methods and Background

2.1 Data Sources

All data used to configure the risk assessment model presented in this paper are either referenced
or come from unpublished records on file with the primary author (Steve Cox-Rogers, DFO Stock
Assessment, Prince Rupert, B.C). Historical catch, escapement, and harvest rate data for Skeena River
sockeye from 1951-2002 were compiled by the responsible manager (M. Potyrala, DFO, Prince Rupert,
B.C. pers. comm.). These data include reconstructed catches of Skeena sockeye salmon in mixed-stock
fisheries in Alaska and northern British Columbia, based on updated stock reconstructions for 1982-2001
using methodology summarized by Gazey and English (1996) and updated through 2001 (English et al.
2004). Reconstructed catches of Skeena sockeye from 1951-1981 are approximate and were based on
application of 1982-1983 tagging data (English et al 1985) to annual catch estimates. Sub-stock
escapement records (e.g. B.C. 16°s) for Skeena sockeye nursery lakes come from electronic files
maintained by FOC stock assessment staff in Prince Rupert. Limnological and limnetic data for Skeena
River nursery lakes come from published and unpublished records provided by FOC’s Lake Research Unit
(Ken Shortreed and Jeremy Hume, Cultus Lake, B.C.).

2.2 Photosynthetic Rate (PR) Model for Estimating Lake Rearing Capacity

Predicting the production capacity for fish in a particular body of water has long been an objective
of freshwater research in North America (see Leach et al. 1987 for a review). It has relevance to
management of recreational and commercial fisheries (sustainable yield) and to enhancement (amount that
recruitment to a lake can be increased). There have been numerous attempts to develop empirical
relationships between lake productivity and fish yield. Since a direct measure of productivity
(i.e., photosynthetic rate) was not usually available, investigators used a number of other limnological
variables as surrogates for PR. These included mean depth and total dissolved solids (Ryder 1965),
summer average chlorophyll concentration (Oglesby 1977; Jones and Hoyer 1982), lake area (Youngs and
Heimbuch 1982), euphotic zone depth (Koenings and Burkett 1987), and total phosphorus concentration
(Downing et al. 1990).

Fee (1985) and Downing et al. (1990) reported that PR measurements were positively correlated
to fish yield. Further, Downing et al. (1990) found that PR was more closely correlated to fish yield than
other variables commonly used as indices of lake productivity (chlorophyll, total phosphorus). While
surrogates may be correlated to PR, using abiotic or biomass variables instead of PR in empirical
relationships with fish yield will introduce additional scatter. Further, an improved understanding of
energy flow between lake trophic levels is more likely when rate measurements at each trophic level are
used.



The PR model (Hume et al. 1996) was derived from the euphotic volume (EV) model (Koenings
and Burkett 1987; Koenings and Kyle 1997), which was developed using data from a number of Alaskan
lakes. Both models provide predictions of optimum escapement, optimum spring fry recruitment, and
maximum smolt output. The EV model uses euphotic zone depth as a surrogate for productivity. In B.C.
lakes euphotic zone depth is not an appropriate surrogate for productivity (Hume et al. 1996). The PR
model uses a direct measure of lake productivity (photosynthetic rate), and so is applicable to a wider range
of lakes. Shortreed et al. (2000) revised the PR model, tested the model predictions, discussed model
assumptions, and presented model predictions for many B.C. lakes, including lakes of the Skeena drainage
system. Shortreed et al. (2001) reported predictions for additional Skeena River lakes.

2.2.1 Data Collection

PR data used in this paper were collected from 16 lakes of the Skeena River system. Data were
collected in 1978 (Stockner and Shortreed 1979), in 1994-1995 (Shortreed et al. 1998), and in 2001-2002
(K. Shortreed and J. Hume, unpublished data). In 10 of the lakes, data were collected once monthly from
May-June to October (n=5 to 6) and in the remaining six lakes PR was measured on only one occasion in
late August or early September. PR data were collected using in situ incubations and the standard **C
technique using and light and dark bottles. A detailed description of the methods used is available in
Shortreed et al. (1998). When seasonal data were available, seasonal average daily PR (PRean) in
mg C-m2.d™ for each lake was computed by integrating daily PR and dividing by the length of the growing
season, which we defined as May 1-October 31. Since the PR model requires an estimate of PRyean, an
adjustment was required when data were available for only one sampling date. Using data from a wide
range of B.C. lakes, daily PR collected in late summer is significantly correlated with PRyean (PRimean = PR
x 0.748, r’=0.60, n=113) (Figure 2). We applied this adjustment to estimate PR ., when data from only
one sampling date were available. We calculated total seasonal PR in tonnes C/lake (PRyua) by
multiplying PRean by the length of the growing season and by lake area.

2.2.2 PR Variability

Variability in annual estimates of PRy, from any particular lake, or location within a lake, could
be a combination of measurement error and annual variability in a number of factors such as sunlight,
temperature, nutrient loading, and turbidity. In a lake in Michigan for which data are available for 14
consecutive years, annual variability in PRy was 9% 2SE (Wetzel 2001). To calculate annual
variability in PR, for B.C. lakes, we compiled data for all B.C. lakes where 3 or more years of PRean
were available. There were multiple years of data for 6 lakes and a total of 24 locations within the lakes.
There were 3 to 5 years of data for each location. We determined the variance in PRa, for each location
and the weighted mean variance for all locations (variance was weighted by years) and then calculated 2
SE's. Two SE's ranged from 3 to 44% for the individual locations while the weighted mean SE was 8.0%
of the weighted mean of 123 mg C-m?.d™. In lakes where we have a full season's sampling (5-6 monthly
sampling dates) we used this estimate of variability in the fishery model.

In lakes where we have only collected PR data from a single late summer sampling trip there are
two sources of variance. The first is the previously mentioned variability associated with the relationship
between the late summer estimate and the seasonal mean estimate. Secondly, seasonal mean PR, as shown
above, also has an associated variability of 8.0% (2SE's). We are examining appropriate methods for
combining these two sources of variability. As a first estimate for the purposes of this paper we used +/-
2SE’s of 20%.



2.2.3 Model Equations
The revised PR model in Shortreed et al. (2000) uses the following forms:

Maximum smolt biomass (kg) = 45.5 X PRy
Optimum escapement (N) = 187 X PRyya
Maximum smolts (N) = 10,120 X PRy

where:

Maximum smolt biomass (Ryax) = Maximum number of smolts times a mean smolt weight of
4.5 g. The weight of 4.5 g was chosen because in Alaskan lakes maximum adult
production occurred when smolts were 4-5 g in weight (Koenings and Burkett 1987).

Optimum escapement (Smax) = Number of spawners needed to maximize smolt production.

Maximum smolts = Maximum number of 4.5 g smolts a lake can produce. This was based on
observed maximum production in Alaskan lakes (Koenings and Burkett 1987)

PRyt = Total seasonal (May-October) carbon production (metric tons).

2.2.4 Adjustments to Model Predictions

Littoral productivity Implicit in PR model predictions is the assumption that sockeye fry do not
benefit from littoral (benthic) PR. The majority of B.C. sockeye nursery lakes are deep and steep-sided, so
the littoral zone makes up a small proportion of total lake area. In these lakes, this assumption is likely to
be valid, as littoral PR is insignificant compared to limnetic PR. However, a number of Skeena system
sockeye lakes (e.g. Kitwanga, Lakelse, Slamgeesh) are relatively shallow, so the littoral zone comprises a
substantial proportion of lake surface area. In these lakes, littoral PR may not be insignificant relative to
limnetic PR. Sockeye could benefit from littoral PR in two ways: first, directly by grazing on zoobenthos;
and second, limnetic zooplankton could be grazing food items originating in the littoral zone (e.g.
dislodged periphyton or bacteria). If littoral PR is of benefit to sockeye, then PRy and PR model
predictions would increase. While sockeye fry are often shore-oriented for part of their lake residence,
even at these times their diet consists of limnetic zooplankton (Morton and Williams 1990). France (1995)
compiled published data on littoral and pelagic food webs from a wide range of (non-sockeye) lakes from
around the world and concluded that "With the exception of a few transzonal migrating species such as
lake trout, littoral benthic food webs appear to be largely uncoupled from planktonic carbon flow".
However, in a large and relatively deep Alaskan lake (lliamna), Kline et al. (1993) used biota 5'°N and
31C to estimate the relative importance of littoral and limnetic diet items to juvenile sockeye. They
reported that the littoral zone contributed 14% of the diet of age-0 O. nerka and 5% of the diet of age-1 O.
nerka. The contribution of littoral PR to juvenile sockeye rearing capacity needs to be better documented
in all types of sockeye lakes and particularly in shallow lakes. Until such data are available, we have
applied no littoral component to PRy

Limnetic competitors In many sockeye rearing lakes there is often competition with sockeye for
the zooplankton food source. Actual or potential competitors include fish such as kokanee (O. nerka) or
stickleback (Gasterosteus spp.) and invertebrates such as mysids, Chaoborus, and Leptodora. Since the
PR model predicts the capacity of the limnetic zone to produce total tertiary biomass, model predictions
need to be adjusted when competitors are present. Data on the abundance, biomass, diet, and temporal
variability of juvenile sockeye competitors is often limited. In the lakes reported here, we have made
preliminary estimates of the biomass of competitors, but considerably more work is required to improve
these preliminary estimates.

In Skeena system lakes, there are a variety of species which have the potential to compete with
sockeye fry. In most of these lakes, little is known about the sockeye competitors. In most cases, we have
sampled the limnetic region with a midwater trawl on one occasion only. We estimated the biomass of
potential competitors in each lake from a number of data sources including midwater trawls, acoustic



counts and target strength, limnetic gill net sets, and reports by others. We assumed that the abundance,
biomass, and type of competitor species present during our trawl surveys was constant and would not
change if sockeye fry biomass increased to capacity. We also assumed (sometimes with literature
confirmation) that the diet of the competitor was the same as age-0 sockeye and that competitor biomass
used the same proportion of available food as an equivalent amount of sockeye biomass. This is the most
conservative approach as we know from sampling that these species occupy the lake's limnetic zone and
that they are planktivorous. To account for competition, we adjusted PRy by the proportion (by biomass)
of PRy Utilized by a competitor with the following formula:

Adjusted PRyotai = PRiotal = PRiotal X (Crmax / Rmax)
where C..x = observed competitor biomass (kg) in the lake.

Smolt weights at Sp,.x Koenings and Burkett (1987) reported that maximum adult returns occurred
when juvenile sockeye densities were sufficiently high to produce 4-5 g smolts. Obviously, average smolt
size strongly affects the numbers of smolts produced by a predicted maximum smolt biomass. The
PR model uses this Alaskan average of 4.5 g in its predictions for B.C. lakes. In order to test the validity of
this average smolt size, we collated age-1 smolt size data from eight sockeye rearing lakes in B.C. and
compared it to the total escapement 2 years earlier. These included seven sample years from Quesnel
Lake, five from Shuswap Lake (Hume et al. 1996), 36 sample years from Babine Lake (Wood et al. 1998;
Hume and MacLellan 2000), 48 sample years from Chilko Lake, 6 from Morice Lake, three from Sustut
Lake (DFO, data on file), nine from Meziadin Lake (Bocking et al. 2001), and 22 sample years from Cultus
Lake (Schubert et al. 2002).

With data from all these lakes combined, there was a weak but significant negative logarithmic
relationship between age-1 smolt size and total escapement (P<0.001, R%; = 0.087) (Figure 3) Little of the
variation in smolt size was explained by the logarithmic relationship but it did explain more than did a
linear relationship (P<0.01, Rzadj =0.067). However, at higher spawner densities (20-165 spawners/ha),
average smolt size was 4.6 g ( +2SE = 12%). These empirical data support the PR model's use of 4.5 g as a
maximum smolt size when maximum smolt biomass is being produced.

Lakes which produce small smolts Some B.C. lakes (e.g. Morice, Owikeno) do not produce
age-1 smolts as large as 4.5 g even at low escapements. In these lakes, we assumed that PR model
predictions of maximum smolt biomass were still valid. Consequently, maximum smolt numbers needed to
be increased to account for their smaller size. Also, predicted optimum escapements needed to be
increased to account for the higher fry recruitment necessary to increase smolt numbers. To make these
adjustments, we increased predictions of both maximum smolt numbers and optimum escapement by the
ratio of 4.5 g to observed smolt size at the highest observed escapement:

Adjusted maximum smolt numbers = Ry« X (4.5/observed smolt size)
Adjusted Spax = Smax X (4.5/0bserved smolt size)

Presence of age-2 smolts In some lakes, a proportion (sometimes the majority) of sockeye fry
from each brood year reside in the lake for more than one year, leaving as age-2 or occasionally age-3
smolts. These older fish compete directly with age-0 sockeye, but they also contribute to smolt production,
so they cannot be treated as simple competitors. While the presence of older smolts will not affect the
predicted maximum smolt biomass a lake can produce, it can have a substantial effect on the numbers of
smolts that make up this biomass. We accounted for older smolts by weighting the mean size of each age
class by its proportion in the smolt run of each brood year.

Significant numbers of age 2 smolts are known to occur in Morice and Kitwanga lakes. We used
available age-1 and age-2 smolt catch data from these lakes to determine the mean proportion and size of
age-2 smolts (data on file). In five brood years from 1958 to 1963, the proportion of age-2 smolts in
Morice Lake ranged from 36 to 75% and averaged 46%. Mean size of age-1 and age-2 smolts was 3.7



(range =2.8-4.8 g) and 7.8 g (range = 6.6 - 9.5 g), respectively. We used these means in the model.
Kitwanga smolts were enumerated and measured in 2000 and 2001(Mark Cleveland, Gitanyow Fishery
Authority, personal communication). Scale ageing found 97% were age-2 smolts with an average weight
of 9. g. As very little data were available on the size of the age-1 smolts, we used 4.5 g. While
escapements were well below the PR estimate of S,,«, We have no data on smolt size or age at higher
escapements, and so assumed sizes would not change at higher densities.

2.2.5 PR Model and the Ricker Model

In Skeena system sockeye nursery lakes where no stock recruit data exist, the PR model provides
a basis for generating theoretical stock recruit relationships. The model makes predictions of both the
maximum sockeye smolt biomass produced by a lake and the total (optimum) escapement needed to
produce that biomass. Equivalent parameters are generated by stock and recruit models for semelparous
species such as sockeye salmon (Ricker 1975; Hilborn and Walters 1992). For the Ricker stock recruit
model in the form:

R =aSe™Se" 1)

R is smolt recruitment (biomass) measured in tonnes, S is spawning escapement, a is the theoretical
recruits per spawner at very low stock sizes (productivity), b describes how quickly recruits per spawner

drops as S increases (capacity parameter), and €" is the residual error term. The peak of the curve, Ry, IS
the maximum predicted recruits (smolt biomass) generated by Sy, the predicted escapement required to
produce R After Hilborn and Walters (1992):

R, =(alb)e™ @

and

Spe =1/ .

Consequently, where suitable PR data are available, we can use PR model predictions of optimum
escapement and maximum smolt biomass (Spax and Rimax) to estimate the Ricker model parameters a and b
for generating theoretical Ricker models for each lake.

Comparison of the PR and Ricker models using data from Fraser system lakes To examine the validity of
the PR-derived stock-recruit model, we compared it to the Ricker model fitted to available data on adult
escapement and juvenile biomass from four sockeye lakes (Chilko, Cultus, Quesnel, Shuswap) in the
Fraser River system. Sockeye escapement data are available for most Fraser River lakes (Schubert 1998;
NuSEDS). Many Fraser River sockeye stocks have highly variable female spawning success, so to better
reflect actual escapements we used estimates of effective female escapement for Chilko, Quesnel, and
Shuswap Lake sockeye. Cultus Lake effective females have rarely been enumerated, so for that lake we
used estimated total female escapement. We modified the PR model Sy, by the weighted mean proportion
of effective females from 1938 to 2002 (we weighted the proportion of females by total escapement in each
year). Average female spawners were 51% EFS in Chilko Lake, 49% EFS in Shuswap Lake, 48% EFS in
Quesnel Lake, and 55% FS in Cultus Lake.

Smolt numbers and size data are available from fences on Chilko and Cultus lakes (Hume et al.
1996; Bradford et al. 2000; Schubert et al. 2002; data on file). On average, 95% of Chilko sockeye smolt
in their second spring (age-1), but on occasion age-2 smolts comprise up to 26% of the total and are 2-4
times the size of age-1 smolts. PR model predictions of Sy.x and Rya« for Chilko Lake were adjusted by
the average proportion of age-2 smolts. Age-2 smolts are rare in Cultus Lake (Schubert et al. 2002). Smolt



numbers are not available for Quesnel and Shuswap lakes, but fall fry numbers and size are available from
acoustic and trawl surveys (Hume et al. 1996; Shortreed et al. 2000; data on file). To convert fall fry
biomass to smolt biomass, we made the assumption that sockeye biomass lost to overwinter mortality
would be counteracted by winter and spring growth. Consequently, we assumed that observed fall fry
biomass was equal to smolt biomass. However, these fall estimates of juvenile O. nerka biomass needed to
be adjusted for kokanee abundance.

Kokanee are present in both Shuswap and Quesnel lakes and can be a significant proportion of the
limnetic fish community in years of low sockeye escapement (Hume et al. 1996). Age-0 juvenile kokanee
are difficult to separate from age-0 sockeye and estimates have only been made occasionally. In Shuswap
Lake, Hume et al. (1996) reported that in the non-dominant brood year (1989), kokanee comprised 73% of
the O. nerka population or 0.67 kg/ha. In Quesnel Lake, in the nondominant 1999 brood year, the
population of age-0 kokanee was estimated at 4% (0.08 kg/ha) using marine Sr in the otolith core (data on
file). We assumed these estimates were the same in all years and corrected for kokanee biomass in the
manner described above for limnetic competitors. To facilitate comparisons between lakes, we normalized
both the juvenile and adult data with lake surface area.

Although significant Ricker curves were fitted to all four sets of juvenile biomass data (P<0.05,
based on log R/S vs S), less than 50% of the variance in juvenile biomass was explained by spawner
density. Given the variance in the Ricker juvenile biomass/spawner model and in the PR model, the
predictions for Sy from the two models are reasonably close, except in Cultus Lake where PR S IS
considerably higher (Figure 4). In Chilko and Quesnel lakes, the juvenile and PR R,s« are also close but
Rimax €stimates from the PR model in Shuswap and Cultus lakes are considerably higher than the estimates
from the Ricker juvenile model. This may indicate other constraints on production in Cultus and Shuswap
lakes, such as limited spawning ground capacity or high juvenile mortality from fish predation. Fish
predators have been documented as major sources of juvenile mortality in both Cultus (summarized in
Schubert et al. 2002) and Shuswap lakes (Williams et al. 1989).

The productivity parameter, Ricker a, estimated from the PR model was similar in all 4 lakes,
varying from 1.38 in Quesnel Lake to 1.20 in Cultus Lake (Figure 5). There was a bigger difference
between lakes for the Ricker a estimate from the juvenile model than from the PR model. Shuswap
sockeye were much more productive with a juvenile Ricker a estimate of 1.12. This was at least 1.3 times
higher than the other stocks, indicating a much higher stock productivity than that estimated for the other 3
stocks (Ricker a = 0.77 - 0.84). The higher values of Ricker a from the PR model than from the juvenile
model may indicate the presence of factors other than primary productivity that controls the productivity of
the sockeye stocks. However, at least some of the discrepancy (possibly most of it) may be due to errors in
estimating the parameters from inherently highly variable data.

The capacity parameter, Ricker b, from both models varied more than did Ricker a ranging from
0.01 - 0.07 for the PR model and from 0.02 - 0.05 for the juvenile model. Unlike the productivity
parameter, there was no consistent difference between Ricker b for the two models. The estimate of
Ricker b from the PR model was higher in Quesnel and Chilko lakes. This may indicate that food supply
(as measured by PR) is not the limiting factor but that other factors (e.g. spawning ground capacity) are
limiting the capacity of these lakes to rear juvenile sockeye. As above, parameter estimate error may also
explain much of the differences.

2.2.6 Further Adjustments to PR-derived Stock and Recruitment Relationships for Skeena Lakes

For Skeena nursery lakes, only in Babine Lake is it possible to compare PR-derived stock and
recruitment relationships against empirical data (Figure 6). The Ricker curve from the PR model is very
similar to the Ricker fit to the smolt data. Both curves generate essentially the same estimates for Spax but
the PR-derived R is about double the fitted curve R Initial simulations using the PR-derived stock-
recruit curves for other Skeena lakes suggested high sustainable exploitation at MSY for many lakes and
higher predicted smolt biomass and escapements, under recent patterns of estimated exploitation, than has



actually been observed from juvenile surveys. As for some Fraser system lakes, we suspect our PR-
derived stock and recruitment model may overestimate productivity for some Skeena sockeye lakes.
Reasons for this may be both parameter estimation error and/or the presence of factors other than lake
rearing which limit sockeye production. Bodker (2001) made similar observations in her comparison of
optimal escapements and maximum recruitment based on Bayesian PR methods and empirical data.

The Ricker parameters from the PR-derived stock and recruitment curves for Skeena lakes can be
manipulated to account for possible parameter estimation error and/or other factors affecting lake
productivity. For example, factors affecting the quality of the incubation habitat can be modelled by
changing Ricker a while factors affecting the extent of incubation habitat can be modelled by changing
Ricker b. The difficulty lies in knowing how much to adjust each parameter in order to generate SR curves
that might best approximate current productivity regimes in each Skeena nursery lake?

One option is to first adjust Syax for suspected spawning limitation in some lakes (see Shortreed
et al 1998) (note this also revises R,y for those lakes), and then sequentially adjust Ricker a (productivity)
until predicted future escapements stabilise or “go flat” under estimated recent exploitation rates and
estimated escapement levels for each lake. Average exploitation on Skeena sockeye has been relatively
stable since the early 1970’s (Cox-Rogers 2003) and so the observed juvenile densities in the lakes today
should (we assume) reflect the cumulative affects of historic exploitation patterns. Currently, unadjusted
Ricker parameters (when used in the simulation model) generate increasing escapement trends and smolt
biomass levels for most Skeena nursery lakes under recent levels of estimated exploitation. Adjusting
Ricker a downwards too much eventually generates decreasing escapement trends and smolt biomass
levels for each lake under recent levels of estimated exploitation. The adjustment procedure does not
specifically identify the causal mechanisms generating production “bottlenecks” in each nursery lake
(parameter estimation error or biotic factors affecting sockeye productivity) but it does account for their
probable effects.

Sub-stock exploitation can be estimated for each stock (see Results section on wild stock
exploitation) by applying reconstructed sockeye Area 3/4/5 weekly harvest rates to the estimated weekly
run-timing proportions for each stock through the Area 3/4/5 fishery and adding additional estimates for
Alaska and in-river FSC/ESSR exploitation. The adjustment procedure provides revised estimates of smolt
biomass, Rmax, for each lake. Ricker a values for Skeena lakes were all > 1.32 prior to the adjustment
process. Our revised Ricker a values range from 0.45-0.98, or slightly less than has been empirically
observed for Fraser Lakes. The adjustment procedure is approximate and assumes stock-specific
exploitation rates are being estimated within some reasonable range of accuracy. Empirical stock-recruit
data from some Skeena sockeye lakes is required to allow comparison of our adjusted PR-derived stock
and recruit relationships with known data.

2.3 Fishery Model

The simulation model consists of a production module (e.g. the PR-derived stock and recruit
relationships) linked to a fishery-harvesting module (Figure 7). Seed recruits to each Skeena sockeye
stock (lake) are “fished” in the harvest module to generate catch. Escapements are then looped through the
production module to generate future streams of age-specific recruits back into the fishery. Probabilistic
statements about future escapement trends for each stock, relative to various spawning escapement
“reference point” guidelines and COSEWIC conservation thresholds, are produced by the simulation
model. Economic predictions about future fisheries value are also generated. The model predicts annual
escapements 100 years into the future under fixed fishing regimes. The model is spreadsheet-based (Excel)
and is run as a Monte Carlo simulation where key inputs, such as run-timing and the PR-model parameters,
are allowed to vary stochastically using triangular, uniform, or normal probability distributions.

2.3.1 Production Module



For each stock (lake) in the fishery model, escapements generate smolt biomass recruits (t/lake)
according to equation (1). Random recruitment is assumed lognormal about the average stock and
recruitment curves described by equation (1). Due to the lack of lake-specific data, we assume the same
variance structure about the stock-recruit relationship for all stocks (In R/S vs S) based on the empirical
stock-recruit analysis of smolt biomass vs spawners for Babine Lake. This approach may over or
underestimate recruitment variability for some non-Babine sockeye stocks and is assumed approximate at
this time. The residual error term for (1) follows Hilborn and Walters (1992):

w o o2 /2

e’ =e 4)

where O is the standard deviation of the residuals from the regression of In (R/S) vs S for Babine Lake.

In the production module, predicted smolt biomass is converted to numbers of smolts using the
empirical relationship between smolt weight and spawners/hectare for British Columbia nursery lakes
shown in Figure 3. Smolt numbers are then converted to adult recruits assuming average smolt-to-adult
survival rates for Babine Lake (0.04+/- SD, data from Wood et al 1998) applied to all stocks equally. As
with recruitment variability, this approach may over or underestimate smolt-adult survival for some non-
Babine sockeye stocks and is considered approximate at this time. Proportions of age-4, age-5, and age-6
fish in the historical time series for the aggregate stock (Cox-Rogers 2003) are used to partition recruits
into age-4, age-5, and age-6 for stocks where age composition data were not available.

Maximum sustained yield escapement, Sy, and MSY equilibrium exploitation, Uy, for each
nursery lake follow the approximation equations listed in Table 7.2 of Hilborn and Walters (1992):

Sy = In(a/b)*(0.5-(0.07 - Ina) ®)
U, =0.5(Ina)-0.07(Ina)? (6)

In the production module, the estimates allowed to vary stochastically include Rmax Spax, Smolt-
marine survival, smolt weight, smolt biomass recruitment, and age composition.

2.3.2 Harvest Module

The harvest module is based on a more complex daily harvest model currently used to manage the
Area 3/4/5 fishery (Cox-Rogers 1994). Five fisheries are modelled: South-southeast Alaska, Canadian
Areas 3/4/5, in-river Skeena native FSC, in-river Skeena native ESSR, terminal native FSC, and terminal
native ESSR. Recreational fisheries impacting sockeye within the Skeena River are not yet configured into
the harvest module but will be incorporated.

Seed recruitment (incoming return) for each stock is either set to one for calculating exploitation
rates alone, or set to a specific N for calculating numerical catch and escapement. Alaska marine catch (C)
and escapement (E) for each stock (j) is calculated using a fixed exploitation rate (u) applied to seed
abundance (N) for each stock:

= Ntotal j * ualaska (6)

= Ntotal i Calaskaj U]

alaska;

E

alaska;

From run-reconstructions, Alaskan exploitation of the aggregate stock has averaged about 0.10 since the
mid-1990’s. This rate is currently applied equally to all stocks in the model although stock-specific values
are likely higher or lower depending upon run-timing.
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Stock-specific escapement from Alaska into the Canadian Area 3/4/5 fishery is distributed on a weekly
basis in the model using normal-curve distributions to approximate run-timing into Area 3/4/5 (Cox-
Rogers 1994):

N. =E * f 8)

ij alaska j ij
9)

1
f. -~ ﬂexp[—(ln X, —xj)Z/Zsz]

U]

where N jj Is the weekly (i) abundance of stock (j) in Area 3/4/5, fij is the weekly proportion of stock (j)
present in Area 3/4/5 each week X, X i is the estimated peak week of entry for fish of a specific stock

into Area 3/4/5, and o i is the estimated standard deviation about the peak for each stock in weeks.

Weekly catch (C) and escapement (E) for each stock (j) in Area 3/4/5 is calculated in the model
by applying user-supplied weekly sockeye harvest rates (h) to the weekly abundance of each stock. Catch
and escapement by week are then summed to generate total Area 3/4/5 catch and escapement past the
escapement boundary for each stock.

Cy =N;*h and thalj = ZC” (10)
E;=N;-C; and Eg, =) E (11)

Historical daily and weekly sockeye harvest rates for the Area 4 fishery have been established by
run-reconstruction of the aggregate stock from 1985-2002 (see Cox-Rogers 1994) and include outer Area 3
and 5 from 1997 onwards. Daily harvest rates in Area 3/4/5 are correlated with fishing effort (Cox-Rogers
1994) and so catch can be varied by adjusting daily harvest rates to achieve specific weekly harvest rate
and annual exploitation rate objectives.

Catches in the in-river FSC and terminal FSC fisheries are generated using fixed (user-supplied)
harvest rates estimated from historical catch and escapements records and an in-river harvest model
(Gazey 2001). Terminal ESSR catches for each nursery lake (and at the Babine Fence) are triggered by
harvesting a fixed proportion (0.25) of surplus escapement above MSY levels, although this proportion can
be set to any value. For Babine Lake, additional ESSR catches at Pinkut and Fulton creeks are triggered by
harvesting a fixed proportion (0.75) of surplus escapement above channel requirements. Again, this
proportion can be set to any value.

In the harvest module, the inputs configured to vary stochastically include peak week
run-timing (and SD) for each stock, Alaska exploitation rates, weekly Area 3/4/5 harvest rates, and in-river
FSC and ESSR harvest rates. Currently, only run-timing is allowed to vary stochastically for the Monte
Carlo simulation (using a triangular distribution and range) as the harvest controls are fixed to assess the
affects of specific fishing regimes.

2.3.3 Simulation Structure
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As noted, spawning escapement (S) to each stock is looped through the production module to
generate future recruitments back into the fishery. s is initialised as the estimated number of spawners

producing observed juvenile density levels in the nursery lakes, either from empirical data where available
(e.g. fence counts) or from the stock-recruit relationships. The simulation model proceeds in annual time
steps for years t= 5 to 100. The escapementat s _, results in simulated age-4, age-5, and age-6 recruits

according to equation (1) in years t, t+1, and t+2. The model freezes all parameter estimates for each
single trial calculation of S for t = 5 to 100. The process is then repeated for a total of 1000 simulation
trials. Currently, there is no co-variance structure among stocks built into the simulation model.

The simulation model does not explicitly consider depensatory population dynamics that may
increase the risk of extirpation at low population sizes (e.g. Allee effects). As an approximation, we use an
extirpation threshold of 50 spawners (for each of five consecutive years) to approximate the spawning
levels below which such effects might be expected (e.g. recruits go to zero).

2.3.4 Fishery Value

The annual stock-specific value of the catch in each fishery is calculated using user-supplied mean
weight and price/lb schedules (not the same for all fisheries). A discount rate (0.05) and discounting
function (Sandy Fraser, DFO, pers comm.) is used to discount future annual values in each fishery:

V, =C; *1/1+n)™

where V/;; is the dollar value of fishery jinyeari, C; is the catch in fishery j inyeari,and r is the

annual discount rate. Landed value is only one variable in any socio-economic analysis and should be used
for comparative purposes only.

3.0 Results

3.1 Stock Status from Adults

Stock status for Skeena nursery lakes is estimated from available adult catch and escapement
records and from juvenile densities in the rearing lakes expressed as a proportion of maximum rearing
capacity. Only 17 of the 29 Skeena nursery lakes have been surveyed to date. Lake trophic status and
juvenile densities have been interpolated for the missing lakes until lake surveys can be conducted (Ken
Shortreed, FOC, pers. comm.).

3.1.1 Stock-specific Run-timing

Run-timing for Skeena River sockeye stocks is estimated from historical sockeye tagging studies
conducted in Area 4 from 1944 to 1959 (Aro and McDonald 1968, Smith and Jordan 1973), the north coast
sockeye tagging project conducted in 1982 and 1983 (English et al 1985), parasite and electrophoretic
variation at the Tyee test fishery from 1987 to 1996 (Rutherford et al 1999) and, most recently, DNA
variation at the Tyee test fishery for 1996, 1998, 1999 (Beacham et al 2000) and 2000, 2001, and 2002
(Terry Beacham, FOC, pers comm.). These studies generally indicate the earliest stocks to be the Lakelse
and Alastair components in late June, followed by the Morice, Swan, Motase, Sustut, McDonnell, early
Babine Lake and Pinkut Creek stocks in early-mid July, the mid-timed Morrison (Babine Lake) and Fulton
Creek stocks in mid-late July, and the late-timed upper and lower Babine River, Kitsumkalum, Kitwanga,
Bear, and stocks in later July-early August.
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Figure 8 shows historical Area 4 tag distributions for Alastair, Lakelse, Kitsumkalum, Kitwanga,
Morice (Bulkley) Kispiox, Babine, Bear, and Johanson lakes as summarised by Aro and McDonald (1968).
Appendix Tables 1, 2, and 3 summarize weekly proportions for the “baseline” DNA sockeye stocks
entering Area 3/4/5 in 2000, 2001, and 2002 initially estimated in Tyee test fishery escapement samples
and subsequently reconstructed back into the commercial fishery. Both the tagging data and the DNA
analyses suggest there is considerable run-timing overlap for Skeena sockeye sub-stocks. The DNA data
also suggests possible annual variation in run-timing and/or more than one timing peak or population
component for some stocks. While this may be true, some of this variability could also be related to
sampling issues (e.g. problems of estimating very small stocks in mixtures dominated by the Babine Lake
component) and/or missing stocks in the baseline causing miss-assignment. Analyses are ongoing to try
and resolve some of these issues.

Table 2 summarizes currently estimated “peak” week run-timing into Area 3/4/5
for Skeena River sockeye sub-stocks. For stocks lacking run-timing data, interim peak timing dates have
been assigned based on geographical proximity to stocks where run-timing data exist.

3.1.2 Aggregate-stock Catch, Escapement and Exploitation

Total stock and escapement trends for the Skeena aggregate stock from 1951-2001 (source Cox-
Rogers 2003, data on file) is plotted in Figure 9. Skeena River sockeye returns have steadily increased
since enhancement began in the early 1970’s. Average total returns were 2.0 million from 1970-79, 2.9
million from 1980-89, and 3.5 million from 1990-1999. During the 1990's, the range of returns has been
quite broad (6.9 million in 1996 to a low of 0.91 million in 1998). Very strong returns were seen in 2000
(4.7million) and 2001 (4.6 million), but they declined to 1.5 million in 2002 as a result of expected reduced
production of age 4 (1998 BY) and age 5 (1997 BY) sockeye (Cox-Rogers 2003). Since 1970, escapements
have exceeded or met escapement targets (1.05 million) in all years except 1998, 1999, and 2002. Annual
exploitation for the Skeena sockeye aggregate has increased over the time series and has averaged 0.60-
0.65 since enhancement began (Figure 10).

3.1.3 Wild-stock Catch and Escapement

Historic catch records for non-Babine sockeye do not exist except for terminal FSC and ESSR
fisheries in-river and so reconstructed returns for the wild stocks cannot be compiled. Stock-specific FSC
catch data exist for Morice Lake sockeye captured in the Bulkley River at Hagwilget Canyon (1930-1964)
and at Moricetown Falls (1930-present) (Cox-Rogers 2000). Historic First Nations catches in the Bulkley
River appear abundance driven in any given year. Stock-specific FSC catch records also exist for jack and
adult harvests taken at the Babine River counting fence (1956-present) and in Kitsegass canyon on the
lower Babine River (1982-present). A detailed accounting of in-river Skeena catches of sockeye in native
FSC and ESSR fisheries from 1982-2000 have been summarised from the many diverse records available
and have been summarized by Gazey (2001).

Visual escapement data for Skeena sockeye lakes (B.C 16’s) have been collected since the late
1920’s. McKinnell and Rutherford (1994) carried out an extensive review of methods of estimating non-
Babine sockeye. Visual sockeye escapement data to the smaller Skeena River sockeye lakes is variable
and of unknown accuracy because of the wide variety of methods used (Shortreed et al 1998). Escapement
estimates to most of the smaller Skeena lakes have been conducted either by foot or air and have not been
done consistently, especially in recent years. Fence counts are (or have been) available for some lake
systems: from 1962-1967 in Williams and Scully Creeks (tributaries to Lakelse Lake), from 1992-present
in the Sustut River below Sustut and Johanson lakes, from 2000-present in the Kitwanga River below
Kitwanga Lake, from 2001-present in Slamgeesh Lake, in 2001 in Swan Lake, and in the Babine River
below Babine-Nilkitkwa Lake from 1946-present. A sockeye mark-recapture tagging program at
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Moricetown Canyon on the Bulkley River was initiated in 2001 to try and improve sockeye escapements
estimates into Morice Lake.

Appendix Table 4 summarises 1950-2002 escapement records for the major Skeena sockeye
nursery lakes where surveys have been conducted, as well as 1950-2002 sockeye fence counts Babine
Lake. The available data suggest escapements to the non-Babine lakes have declined and stabilised at
lower levels, relative to Babine Lake, since the 1950’s (Figure 11). There is evidence of an increasing
trend after the mid-1980’s and into the 1990°s for some of the lakes despite the sustained high harvest rates
on the Skeena run as whole (Figure 12). Wood et al (1998) presumed this to be a direct result of
continuing efforts to harvest the mid-timing Babine sockeye as selectively as possible, but higher
freshwater/marine survivals have played a role.

Its unclear how escapement survey error may affect interpretation of escapement trends for non-
Babine sockeye lakes. The time series is not complete for all lakes and less effort now goes into surveying
escapements than in past years. For wild stocks where fences are in place, recent escapements are actually
quite concerning. In Kitwanga Lake for example, fence count escapements were just 320, 231, 198, and
998 sockeye in 1999, 2000, 2001, and 2002 respectively. For Slamgeesh Lake, fence count escapements
were 1350 and 324 in 2001 and 2002 respectively. For Sustut and Johanson lakes enumerated at the Sustut
River fence from 1992-2002, actual escapements to both lakes combined have _trended downward since
1992 (Figure 13). Sustut fence counts were just 221 476, 1258, and 674 sockeye in 1999, 2000, 2001, and
2002 respectively. The calculated decline rate from 1992 to 2002 is estimated at 75% (Figure 13).

A more detailed analysis of sub-stock escapements into Babine Lake was conducted by Wood et
al (1998). Their analysis indicated a decline in some Babine lake wild stocks shortly after the first
enhanced sockeye returned (Figure 14). They attributed the decline to increased exploitation during
fisheries targeting the enhanced stocks. Early timing escapements have been the least affected whereas
wild mid-timing escapements (Morrison Lake) have been most affected (Wood et al 1998). Late-timing
escapements increased following implementation of more conservative management policies and continue
to do so today whereas mid-timing escapements have averaged less than half of pre-enhancement levels
(Wood et al 1998).

3.1.4 Wild-stock Exploitation

Annual catch and escapement data do not exist for sockeye originating from non-Babine nursery lakes
and so exploitation rates cannot be calculated directly. An alternative approach is to calculate annual
exploitation rates using historic weekly harvest rates in Area 4 applied to the normal-curve timing
proportions for each individual stock. This was done for the years 1970-2002. Reconstructed (annual)
Alaskan and in-river FSC exploitation rates for the aggregate stock can be used to approximate additional
marine and FSC exploitation on each of the sub-stocks. While this method may overestimate exploitation
for some stocks and under-estimate for others, we feel the general trends resulting from this approach are
realistic.

Appendix Table 5 summarises weekly sockeye harvest rates in Area 4 (catch/ (catch+escapement)
for the aggregate stock from 1956-2002. Weekly harvest rates have been highest during mid-late July and
lowest during early July and early-mid August. They have also varied within weeks over the time series
(Figure 15). From Appendix Table 5, decadal mean weekly Area 4 harvest rates are shown below:
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Week Jn25-1  JI1-7 Ji8-14 JI15-21 J122-28 JI29-04 Au5-11

1956-59 0.000 0.000 0.148 0.423 0.367 0.414 0.272
1960-69 0.227 0.380 0.394 0.485 0.476 0.503 0.418
1970-79 0.160 0.331 0.426 0.414 0.568 0.404 0.495
1980-89 0.022 0.108 0.331 0.406 0.498 0.397 0.321
1990-99 0.106 0.318 0.410 0.457 0.415 0.373 0.276
2000-09 0.155 0.383 0.596 0.570 0.550 0.516 0.309

Appendix Table 6 summarises estimated 1970-2002 marine exploitation (Alaska+Canada) for
Skeena sockeye sub-stocks peaking in Area 4_during each specified week. Marine exploitation by timing
group is plotted in Figure 16. We estimate that marine exploitation rates have been lowest for sub-stocks
peaking in late June/early July and late July/early August and have been highest for stocks peaking in mid-
late July. Exploitation rates on the specific sub-stocks are primarily driven by the pattern of weekly harvest
rates in Area 3/4/5. From Appendix Table 6, decadal mean marine exploitation rates for stocks peaking
in each week are shown below:

Peaking Peaking Peaking Peaking Peaking Peaking Peaking
Week Jn25-1 Jl1-7 JI 8-14 JI15-21  JI22-28 JI29-04 Aub5-11

1970-79 0.212 0.311 0.396 0.452 0.480 0.481 0.456
1980-89 0.185 0.261 0.352 0.426 0.460 0.454 0.421
1990-99 0.278 0.366 0.438 0.474 0.471 0.439 0.392
2000-09 0.256 0.382 0.487 0.537 0.525 0.463 0.368

Decadal mean total exploitation (marine + FSC) for each timing group is shown below. ESSR
exploitation for certain years primarily affects the mid-timed enhanced component and would represent an
add-on for some stocks to the calculations presented here. We suspect our estimates of total exploitation
may actually under-estimate exploitation in some fisheries, especially for some in-river FSC fisheries.

Peaking Peaking Peaking Peaking Peaking Peaking Peaking
Week Jn25-1  J1-7 Ji 8-14 JI15-21  JI22-28 JI29-04 Aub5-11

1970-79 0.262 0.361 0.446 0.502 0.530 0.531 0.506
1980-89 0.245 0.321 0.412 0.486 0.520 0.514 0.481
1990-99 0.338 0.426 0.498 0.534 0.531 0.499 0.452
2000-09 0.279 0.405 0.510 0.560 0.548 0.486 0.391

3.2 Stock Status from Juveniles

It is important to note that our understanding of trophic status and rearing capacity of Skeena
Lakes is still evolving and there is some discrepancy among lakes with respect to the quality of the data we
are using to make our assessments (Table 3, Table 4). We anticipate better resolution of trophic status and
rearing capacity as further studies and/or updates to past evaluations becomes available. Table 5
summarises current (e.g. at the time the surveys were done) estimates of optimum escapement, maximum
smolt biomass, observed smolt biomass, and factors limiting production for Skeena sockeye nursery lakes
based the PR-model assessments. Table 6 summarises calculated production parameters for the un-
adjusted and adjusted-PR model stock and recruit relationships. Some of the data in Table 5 differ from
previously published or distributed values and reflect updates to the PR model.
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Appendix Table 7 summarizes predicted and observed smolt biomass levels in Skeena nursery
lakes, PR model calculated escapements producing observed smolt biomass levels, and estimates of MSY
escapement and sustainable exploitation at MSY for each nursery lake. Figures 17 and 18 compare the
percentages of rearing capacity currently being achieved for each lake for the un-adjusted PR model
estimates of rearing capacity and the adjusted PR model estimates of rearing capacity. The unadjusted PR
model suggests that smolt biomass levels are at less than 25% of capacity for 21 of the 26 Skeena nursery
lakes where data are available. Six of the lakes are estimated to be below 10% of capacity (Kitwanga, Club,
Bear, Atna, Johanson, and Kalum). The adjusted PR model suggests that smolt biomass levels are at less
than 25% of capacity for 6 of the 26 Skeena nursery lakes where data are available while 2 (Kitwanga and
Club) are estimated to be below 10% of capacity. For the adjusted PR model estimates, the majority of the
lakes for are estimated to be below 50% of capacity (17/26).

It’s unclear at this time if the juvenile stock status of each lake is being accurately portrayed by
either the un-adjusted PR model data or our adjusted PR model data. As noted, the unadjusted PR model
may overestimate rearing capacity in some nursery lakes and thus result in very pessimistic estimates of
current stock status. Our adjustments to the PR model estimates attempt to account for possible over-
estimation of rearing capacity and this results in more optimistic estimates of current stock status. Actual
stock status for each lake (observed smolt biomass/potential smolt biomass) may actually lie somewhere in
between the two estimates. Still, the most optimistic analysis (the adjusted PR model) suggests that smolt
biomass levels for 17 of the 26 Skeena nursery lakes are still at less than 50% of rearing capacity at the
current time. Only four lakes (Alastair, Lakelse, Babine, and Slamgeesh) are estimated to be above 70% of
rearing capacity. Four lakes are predicted to be at less than 15% of capacity (Club, Kitwanga, Atna, and
Johanson). Maxan and Bulkley Lakes, which have little or no access due to habitat issues, are likely close
to 0% of capacity although both lakes, at one time, supported good populations of sockeye. We anticipate
that updated assessments and further analytical refinements will help to finalise stock status and of Skeena
nursery lakes estimated from juvenile data. As such, the results presented in this working paper should be
considered preliminary.

3.2.1 Sustainable Exploitation

Sustainable exploitation rates for Skeena sockeye lakes (Appendix Table 7) suggest the
majority of stocks require exploitation below 0.45, under currently estimated productivity regimes, in
order to achieve MSY escapement levels or higher. Figure 19 shows the estimated distribution of
sustainable exploitation at MSY for Skeena sockeye nursery lakes. There does not appear to be wide
variation in our estimates of MSY exploitation among lakes, which could reflect parameter estimation
error. However, while they are low, the estimates of sustainable exploitation at MSY are not un-reasonable
considering that most non-Babine nursery lakes are very oligotrophic (Shortreed et al 1998). For the
Babine Lake composite stock, which rears both wild and enhanced sockeye, sustainable exploitation at
MSY is estimated to be about 0.62, although this rate is likely too high for the wild stocks and too low for
the enhanced Pinkut and Fulton components. As with the stock status analyses presented above, updated
assessments and further analytical refinements should help to finalise our estimates of sustainable
exploitation for Skeena sockeye lakes.

Under current and historic rates of fishery exploitation, our analysis indicates the majority of non-
Babine Lake sockeye stocks are probably over-exploited by combined marine and in-river mixed-stock
fishing. Shortreed et al (1998) and Wood et al (1998) reached the same conclusion.

3.3 Projected Stock Status Using Fishery Simulation

A simple simulation example is presented to demonstrate how the simulation model can be used to
predict future stock status of Skeena nursery lakes under different fishing regimes. It is not our intention to
compare various fishing options in this paper as companion analyses are underway for this purpose. The
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lake-specific parameter estimates used for this simulation are still under review and development and so
the simulation results are considered preliminary.

The simulation example is based on recent fishing patterns and represents what might be expected
if these fishing patterns were to continue into the future. The simulation uses average Area 3/4/5 weekly
harvest rates for the past 3 years (2000-2002), an Alaskan exploitation rate of 0.10, which is slightly higher
than the 2000-2002 average, and estimated in-river FSC harvest rates for the past three years.

For each stock, the simulation model produces probability distributions of escapement for each
year as well as summary graphics showing the median escapement trajectories into the future, median
decline rate graphics, annual reference point probabilities, and annual fisheries values. It is not possible in
this paper to present these results for all stocks at once and so a summary of simulation results is presented
to highlight the major points.

3.3.1 Reference Point Probabilities

The simulation model calculates probabilities of future escapements to each stock falling within
various “reference point” escapement zones under different fishing scenarios. We define three escapement
reference points for this simulation: a) a lower reference point corresponding to escapements less than 100
fish (quasi-extinction threshold), b) a higher “prudent” reference point (PRP) corresponding to 10% of
Smax escapement, which simulations indicate is similar to the escapement level required to achieve, with
90% probability, MSY escapement within three generations under no exploitation for most stocks, and c)
a higher reference point corresponding to MSY escapement. The three reference points define four zones
of abundance along the spawning escapement continuum. Reference point probabilities are calculated as
the proportion of simulation trials meeting the reference point criteria.

Criteria for developing reference points are still being developed and so those used in this paper
are presented for example purposes only. For example, Wood (1999) examined other potential reference
points for Skeena sockeye including a) escapement needed to produce 10% of Rmax, and b) historical
recovery (lowest average 5-year escapement).

Appendix Table 8 presents summary results for the simulation example. Not shown are the
calculated fishery values for each stock at t=15 and t=25 years into the future respectively. Figure 20
shows the probability of each stock being within one of four escapement “reference point” zones at the end
of the next 3 generation (15 years) period. Assuming a minimum probability level of p=0.50 can be used
to indicate a stock being in one zone or another, then 2 stocks (lakes) would be in the quasi-extinct
escapement zone (n < 100 spawners), 8 stocks (lakes) would be in the escapement zone between quasi-
extinction and the PRP, 9 stocks would be in the escapement zone between the PRP and MSY, and 4
stocks (lakes) would be in the escapement zone above MSY. Note, for Babine Lake, the model applies
ESSR harvest rate rules for terminal harvesting and so the escapement levels predicted by this simulation
are being reduced by catches occurring at the Babine Fence and the mouths of Pinkut Creek and Fulton
River.

3.3.2 Conservation Probabilities

COSEWIC criteria for classifying species at risk in Canada can be applied to the projected
escapements to each Skeena sockeye stock (lake) under different fishing scenarios. COSEWIC uses a
quantitative system (the Red List) developed by the World Conservation Union (IUCN v.3.1 2001) for
classifying species at risk. The categories are extinct, extinct in the wild, threatened, near threatened, least
concern, and data deficient. The category “threatened” encompasses three sub-categories most applicable
to Skeena sockeye assessments: “critically endangered”, “endangered”, and vulnerable”. A stock is
assigned to any of these sub-categories if one of five criteria conditions (A through E, IUCN v3.1 2001)
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within each sub-category is met. The criteria conditions are applied to observed or predicted reductions
(and associated probabilities) in the number of mature individuals over 10 years or three generations,
whichever is longer, and predicted population sizes (and associated probability) of mature individuals.

Decline rates are estimated in our model across a three-generation window (15 years) for a one-
generation smoothed trend (running five-year average) using the natural logarithm of median adult
spawner abundance. We define a stock to be quasi-extinct if fewer than 100 mature spawners occur for
any consecutive 5 year period (1 generation) and extirpated if fewer than 50 mature spawners occur for any
consecutive 5 year period (IUCN extinction level is n=50). COSEWIC probabilities are calculated as the
fraction of the total simulation trials meeting the category criteria.

Quasi-extinction

Figure 21 shows calculated probabilities of quasi-extinction for each Skeena sockeye stock (lake)
for this simulation example. Over 100 years, the probability of quasi-extinction is between 0 and 0.25 for
11 stocks, between 0.25 and 0.50 for 6 stocks, and greater than 0.50 for one stock. Over the next 15 years,
the probability of quasi-extinction is between 0 and 0.25 for 3 stocks and zero for all of the other stocks.
It’s unclear how realistic or useful the 100 year simulation actually is given that the same fishing plan
would not actually be implemented each year as simulated. Over the next 15 years, probabilities of quasi-
extinction would be very low under this fishing regime for all stocks except Spawning Lake (0.26). This
simulation example may under-estimate quasi-extinction probabilities if recruitment variability is actually
greater than specified in our simulation model.

Decline Rates

Figure 22 shows projected decline rates for each Skeena sockeye stock (lake) for this simulation
example. Four stocks (Bear, Damshilgwit, Kitwanga, and Sicintine) are predicted to experience decline
rates > 50% and generate IUCN listings of Endangered (EN) while 3 stocks (Azuklotz, Kalum, and
Motase) are predicted to experience decline rates > 30% and generate IUCN listings of VVulnerable (VU).
That so many stocks show a declining trend is not surprising given the high exploitation rates (Appendix
Table 8) this simulated “status quo” fishing pattern generates.

Interestingly, our simulation does not generate listable decline rates for Sustut or Johanson lakes
where observed fence counts (Figure 13) actually suggest a marked decline in escapements (75%) over the
past ten years leading to a potential IUCN listing of Endangered (EN) to Critically Endangered (CR).
While the simulation does indicate some probability of 30% and 50% decline rates for these stocks
(Appendix table 8) we suspect our simulation model could either be a) (still) over-estimating productivity
for these lakes b) under-estimating recruitment variability, c) using inappropriate run-timing relative to
weekly harvest rate structure, or d) be affected by lake survey data sampled during a period of possibly
higher production. These concerns also extend to other Skeena lakes where production information is
either poor (Table 3) or is missing and has been interpolated. For example. Slamgeesh Lake is estimated
to be very productive and able to sustain high exploitation rates, while its co-joined lake (Damshilgwit)
cannot. The stock status of Lakelse Lake is estimated to be quite good based on available data, yet
extremely low spawner abundances in the lake tributaries were reported in 2002 (D. Wagner, FOC, pers.
comm.). As previously noted, we anticipate better resolution of stock-specific production dynamics for
Skeena sockeye nursery lakes as further studies and/or updates to past evaluations become available.

One concern in applying decline rate criteria to trigger conservation listings is the maintenance of
small Skeena sockeye stocks at very low levels without decline under relatively stable yet high exploitation
rates. For example, Kitwanga Lake sockeye appear to have been maintaining very low annual escapement
levels (about 100-500 spawners) under high exploitation for many years. Applying decline rate criteria to
past escapements would not necessarily trigger a conservation listing for this stock. The same concern
applies to other, perhaps smaller sockeye stocks within the Skeena system which have very low productive
capacities and are perhaps being maintained at stable yet low escapement levels.
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The opposite concern applies to stocks which show no evidence of decline until recent years. For
example, Morice Lake sockeye have been exploited at moderate yet stable levels and appear to be
responding to variations (we suspect) in freshwater and/or marine survival that offset decline trends
evaluated with the IUCN criteria. Because of relatively high escapements mid-way through the past 3
generation period, Morice Lake actually shows an increasing trend when the decline rate criteria are
applied to the past 3 generation visual escapement record (Figure 23). However, recent escapements
appear to be returning to the lower escapement levels maintained throughout the 1960°s and into the early
1990’s (1000-10000 fish) which are less than 10% of estimated spawning capacity.

4.0 Summary Conclusions

Table 5 perhaps best summarises and re-enforces our impressions of overall stock status of
Skeena sockeye nursery lakes. Although many lakes still require evaluation and production parameter
estimates are still under review, our findings re-enforce previous assessments (Shortreed et al 1998, 2001)
concluding that the majority of Skeena nursery lakes that have been surveyed are oligotrophic, appear to
be largely fry-recruitment limited (not enough spawners) and producing sockeye below potential
production. In addition to recruitment limitation, some lakes are also being limited by factors such as low
spawning ground capacity or quality, low in-lake growth and/or survival, nutrient limitation, glacial
turbidity, and species competition. All of these factors act to reduce sockeye productivity and limit
sustainable exploitation rates. Increased fry recruitment through increased escapements, combined with
lake-specific restorative and/or enhancement techniques, has been suggested for improving sockeye
production from non-Babine nursery lakes (Shortreed et al 1998, 2001).

-Rearing capacity estimates from the PR model were modified to account for other limnetic
competitors, variations between lakes in smolt size at rearing capacity, and multiple ages of smolts.
Further adjustments were made through the use of the simulation model to account for other limiting
factors (e.g. spawning grounds, predation). These modifications and adjustments resulted in reduced
estimates of rearing capacity for each stock. From the limnetic and juvenile surveys of the nursery lakes,
estimated juvenile densities (at the time of sampling) are estimated to be at less than 15% of adjusted
capacity for 4 lakes, at less than 25% of adjusted capacity for 6 lakes, at less than 50% of adjusted capacity
for 18 lakes, and at less than 75% of capacity 23 lakes. Juvenile densities in just 4 Skeena nursery lakes
(Babine, Alastair, Lakelse, and Slamgeesh) are estimated to be at more than 75% of adjusted capacity.

-From the exploitation rate assessments, recent average decadal exploitation rates have been
higher than estimated sustainable exploitation at MSY for approximately 19 Skeena sockeye nursery lakes.

-From the escapement assessments of non-Babine lakes where fences have been in place for
several years, adult escapement counts have either been very low (Kitwanga), or have been declining
(Sustut/Johanson).

-From the visual escapement assessments of most non-Babine lakes, escapement trends have
either been declining or have stabilised to lower than historic levels. The only Skeena sockeye nursery
lake showing strong evidence of increasing escapements and production appears to be Babine Lake where
early wild, late wild, and enhanced Pinkut and Fulton stocks appear to be doing well.

-Simulation modelling based on PR-model derived production relationships suggests that 7 non-
Babine sockeye stocks risk escapement decline rates ranging from 30% to > 50% under continued patterns
of high fisheries exploitation. Simulation modelling can be used to evaluate alternative impacts of different
fishing regimes on Skeena sockeye stocks. Simulation modelling can also be used to evaluate re-building
and recovery options.

-Three Skeena sockeye nursery lakes warrant special mention either because of observed low
juvenile abundances, observed low or declining adult escapements, or both (Kitwanga Lake, Sustut Lake,
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and Johanson Lake). Two other Skeena sockeye nursery lakes are also of concern because of probable
habitat issues restricting sockeye access (Maxan and Bulkey Lakes).

5.0 Recommendations

1) Data on many Skeena lakes are either very limited or non-existent and are needed to improve
both empirical knowledge of these systems and model predictions. Obtaining additional data on current
sockeye stock status and factors affecting stock status should be a priority. These factors include juvenile
sockeye abundance and growth rates, lake productivity, factors limiting lake productivity, and other factors
which could be constraining sockeye production (e.g. access to the lakes, spawning ground
capacity/quality, predators, competitors, temperature ranges, and seasonal oxygen depletion).

2) A schedule of rotational assessment surveys should be developed for updating stock status of
Skeena lakes in future years. Juvenile surveys provide estimates of lake capacity utilization and are best
suited to assessing stock status in sockeye nursery lakes where accurate adult escapement (and associated
catch) is difficult or logistically impossible to collect.

3) For all non-Babine sockeye nursery lakes, examining options for increasing fry recruitment
through increased escapements, combined with lake-specific restorative and/or enhancement techniques,
should be evaluated as a means of improving sockeye production from non-Babine nursery lakes.
Recovery plans for addressing low or declining sockeye escapements to several Skeena nursery lakes
should be an immediate priority. These lakes include Kitwanga, Sustut, Johanson, Maxan, and Bulkley
Lakes.

4) Fishing plans for marine and in-river mixed-stock Skeena sockeye fisheries should be
developed with strong consideration of the effects of exploitation on sockeye from all Skeena sockeye
lakes where the probabilities of generating or maintaining low escapements (e.g. below PRP’s) and
associated juvenile production is high.
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Figure 9. Skeena River sockeye salmon aggregate total stock and escapement 1951-2001. The dashed
line is the aggregate-stock escapement goal past the Tyee test fishery of 900,000 + 150,000
for FSC allocations. Note the y-axis is plotted on a logarithmic scale. The smoothed trend
line is a LOWESS fit. Data prior to 1970 are not reconstructed through all fisheries and
therefore may underestimate total stock.



32

1.0

Exploitation Rate

0.0
1950 1960 1970 1980 1990 2000 2010
YEAR

Figure 10. Skeena River sockeye salmon exploitation rates for the aggregate stock: 1951-2001. The
smoothed trend line is a LOWESS fit. Data prior to 1970 are not reconstructed through
all fisheries and may therefore underestimate total exploitation. Average exploitation (all
fisheries) since enhancement of Babine Lake began in the late 1960’s has been in the

0.60-0.65 range.
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Figure 11. Sockeye salmon counts through the Babine River counting fence at Babine Lake and
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Note the y-axis is plotted on a logarithmic scale. The smoothed trend line is a LOWESS
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Figure 13. Sockeye salmon escapement counts through the Sustut River counting fence (1992-2002)
and the estimated decline rate (about 75%) from 1992-2002. The Sustut fence is located
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stocks peaking in Area 4 during specific weeks: 1970-2002. The smoothed trend line is a
LOWESS fit.



39

0O o e e e e e o

‘#"’6\%\1@\\6’& o‘\\oﬁ\% '&\ee eo@e%\%e‘\ NN ‘@‘\
V ° oq%o “‘§®®°\)° SN Qe X8

Percentage of Rearing Capacity (smolt biomass t/lak

Lake

Figure 17. Estimated percentage of juvenile rearing capacity being achieved for each Skeena
sockeye rearing lake based upon un-adjusted PR model data (see text). The percentage of
juvenile rearing capacity being achieved = observed smolt biomass/estimated maximum
smolt biomass at capacity*100.



40

4

o

=

[9)]

200 e A R A R A O

§ oo :
0

= 80 -
£

5 70 -
N—r

2 60 .
&

S soHly-wl v Yl
S

O 40 .
g

= 30 u
3 - 11 1
o 20

S

o 10

g

+ N DBt o Q 2 O 2 0% QO

% ?wr,\g%&l%xg{ox a\%e:a o\i :oéﬁg\\)d?\i\g@)&%%‘\\& e \&5 (\\(‘;Q R Q%e ‘@»

o

L Lake

Figure 18. Estimated percentage of juvenile rearing capacity being achieved for each Skeena
sockeye rearing lake based upon adjusted PR model data (see text). The percentage of
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rearing capacity as a result of suspected parameter over-estimation error and/or the
presence of factors other than lake rearing capacity limiting sockeye productivity in the
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Figure 20. Probabilities of escapements to Skeena sockeye lakes being within various escapement
“reference point” zones at the end of the next 3 generations (15 years) under recent
historic (1990-1999) average Area 3/4/5 harvest rates, Alaskan exploitation, and in-river
FSC exploitation. The PRP “prudent reference point” represents 10% of Smax spawning
escapement. Maxan/Bulkley Lakes not included due to lack of production data. Dennis
and Aldrich Lakes included with McDonnel due to a lack of observed smolt biomass data
for establishing seed escapement size. Morrison Lake is included with Babine Lake.
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Figure 21. Probabilities of quasi-extinction for Skeena sockeye stocks (lakes) within the next 100
years and within the next 15 years under recent (2000-2002) average Area 3/4/5 harvest
rates, Alaskan exploitation, and in-river FSC exploitation. Quasi-extinction is defined as
escapements of 100 or fewer spawners for each of five consecutive years (1 generation).
The probabilities represent the proportion of simulation trials where this criterion was
met for each stock. Maxan/Bulkley Lakes not included due to lack of production data.
Dennis and Aldrich Lakes included with McDonnell due to lack of observed smolt
biomass data for establishing seed escapement size. Morrison Lake is included with
Babine Lake.
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Figure 22. Predicted median escapement decline rates for Skeena sockeye stocks (lakes) over the
next 3 generations (15 years) under recent (2000-2002) average Area 3/4/5 harvest rates,
Alaskan exploitation, and in-river FSC exploitation. The upper dashed line (50% decline
rate) corresponds to IUCN listing category Endangered (EN). The lower dashed line
corresponds to IUCN listing category Vulnerable (VU). Maxan/Bulkley Lakes not
included due to lack of production data. Dennis and Aldrich Lakes included with
McDonnell due to lack of observed smolt biomass data for establishing seed escapement
size. Morrison Lake is included with Babine Lake.
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Figure 23.

Calculated decline rate (zero) for Morice Lake sockeye based on 1987-2002 visual
escapement data records (2001 and 2002 based on mark-recapture estimates). The
decline rate is calculated from the linear regression of smoothed escapement (5yr
running avg.) over the past 3 generation (15 years) period. The data indicate an
increasing rate of 47% over the time span, primarily driven by high escapements during
the mid-1990’s, although escapements have been actually trending downwards since the
late 1990’s. Note the y-axis is plotted on a logarithmic scale. The dashed lines show the
zero, 30%, 50%, and 80% decline lines.




Table 1. Skeena sockeye nursery lakes, associated river drainages, and surface areas.

Lake Geographical Associated Surface %
Location River Drainage Area (km”2) of Total

Alastair Lower Skeena Gitnadoix 6.9 1.0%
Aldrich Middle Skeena Zymoetz (Copper) 0.5 0.1%
Asitka Upper Skeena Sustut 0.4 0.1%
Atna Middle Skeena Morice 5.1 0.7%
Azuklotz Upper Skeena Bear 2.2 0.3%
Babine-Nilkitkwa Upper Skeena Babine 461.0 67.4%
Bear Upper Skeena Bear 19.0 2.8%
Bulkley Middle Skeena Morice 0.5 0.1%
Club Middle Skeena Kispiox 0.4 0.1%
Damshilgwit Upper Skeena Slamgeesh 0.3 0.0%
Dennis Middle Skeena Zymoetz (Copper) 0.5 0.1%
Johanson Upper Skeena Sustut 1.4 0.2%
Johnston Lower Skeena Ecstall 19 0.3%
Kitsumkalum Middle Skeena Kalum 19.0 2.8%
Kitwanga Middle Skeena Kitwanga 7.8 1.1%
Kluatantan Lks. Upper Skeena Kluatantan 0.2 0.0%
Kluayaz Upper Skeena Kluatantan 1.4 0.2%
Lakelse Lower Skeena Lakelse 13.0 1.9%
Maxan Middle Skeena Morice 0.6 0.1%
McDonell Middle Skeena Zymoetz (Copper) 2.2 0.3%
Morice Middle Skeena Morice 96.0 14.0%
Morrison Upper Skeena Babine 13.0 1.9%
Motase Upper Skeena Motase 14.0 2.1%
Sicintine Upper Skeena Sicintine 0.7 0.1%
Slamgeesh Upper Skeena Slamgeesh 0.4 0.1%
Spawning Upper Skeena Sustut 0.2 0.0%
Stephens Middle Skeena Kispiox 1.9 0.3%
Sustut Upper Skeena Sustut 2.5 0.4%
Swan Middle Skeena Kispiox 18.0 2.6%
Total 684.1 100.0%
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Table 2. Estimated Area 3/4/5 run-timing peaks for Skeena sockeye stocks and assumed variability.

Lake Estimated Peak Management  Allowed Standard Allow ed
Peak Timing Week Group Range Deviation Range

Alastair June 24-30 64 ENB +-1week 15weeks +-1/2week
Aldrich July 8-15 72 MNB +-1week 15weeks +-1/2week
Asitka July 8-15 72 MNB +-1week 15weeks +-1/2week
Atna July 1-7 71 ENB +-1week 15weeks +-1/2week
Azuklotz July 22-28 74 LNB +-1week 15weeks +-1/2week
Babine-Nilkitkw a July 8-Aug 4 72-75 BAB +-1week 15weeks +-1/2week
Bear July 22-28 74 LNB +-1week 15weeks +-1/2week
Bulkley July 1-7 71 ENB +-1week 15weeks +-1/2week
Club July 8-15 72 MNB +-1week 15weeks +-1/2week
Damshilgw it July 15-22 73 MNB +-1week 15weeks +-1/2week
Dennis July 8-15 72 MNB +-1week 15weeks +-1/2week
Johanson July 8-15 72 MNB +-1week 15weeks +-1/2week
Johnston June 24-30 64 ENB +-1week 15weeks +-1/2week
Kitsumkalum July 22-28 74 LNB +-1week 15weeks +-1/2week
Kitw anga July 22-28 74 LNB +-1week 15weeks +-1/2week
Kluatantan Lks July 8-15 72 MNB +-1week 15weeks +-1/2week
Kluayaz July 8-15 72 MNB +-1week 15weeks +-1/2week
Lakelse June 24-30 64 ENB +-1week 15weeks +-1/2week
Maxan July 1-7 71 ENB +-1week 15weeks +-1/2week
McDonell July 8-15 72 MNB +-1week 15weeks +-1/2week
Morice July 1-7 71 ENB +-1week 15weeks +-1/2week
Morrison July 15-22 73 BAB +-1week 15weeks +-1/2week
Motase July 15-22 73 MNB +-1week 15weeks +-1/2week
Sicintine July 15-22 73 MNB +-1week 15weeks +-1/2week
Slamgeesh July 15-22 73 MNB +-1week 15weeks +-1/2week
Spaw ning July 8-15 72 MNB +-1week 15weeks +-1/2week
Stephens July 8-15 72 MNB +-1week 15weeks +-1/2week
Sustut July 8-15 72 MNB +-1week 15weeks +-1/2week
Swan July 8-15 72 MNB +-1week 15weeks +-1/2week

(1) Run-timing variability for each stock assumes a triangular distribution for the peak and its s.d.:
e.g. for Alastair, the peak w eek is set to 64 (June 24-30) w ith a minimum of w eek 63 and a maximum of week 71
-the standard deviation about the peak w eek is set to 1.5 w eeks (Cox-Rogers 1994) w ith a minimum of 1 week
and a maximum of 2 w eeks.
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Table 3. Quality of lake trophic data and juvenile data used in arriving at estimates in Appendix

Table 7.

Date of Last Date of Last Smolt Mean

Limnological Juvenile Bathymetric Current size at Age at data "Good" &
Lake Assessment Assessment charts PR Data biomass capacity Competitors smolting Quality "OK" data
Babine 1995 annually 1 1 1 1 1 1 1.0 6
Morice 2002 2002 3 1 2 2 3 2 2.2 4
Slamgeesh 2001 2001 1 3 1 2 3 2 2.0 4
Sustut 1996 1993 2 2 3 2 3 2 2.3 4
Kitsumkalum 1996 1993 2 2 2 3 3 3 2.5 3
Alastair 1996 1994 2 2 3 4 3 3 2.8 2
Lakelse 1996 1993 2 2 3 3 3 3 2.7 2
Swan 1996 2002 2 2 3 4 3 3 2.8 2
Kitwanga 1996 1994 2 2 3 4 3 3 2.8 2
Johanson 1996 1993 2 2 3 4 3 3 2.8 2
Bear 1996 1994 2 2 3 4 3 3 2.8 2
Morrison 1996 1994 3 2 3 3 3 2 2.7 2
Stephens 2002 2002 2 3 3 4 3 3 3.0 1
Club 2002 2002 2 3 3 4 3 3 3.0 1
Maxan no no 2 4 4 4 4 4 3.7 1
McDonell 2001 2002 2 3 3 4 3 3 3.0 1
Dennis 2001 no 2 3 4 4 3 4 3.3 1
Aldrich 2001 2001 2 3 3 4 3 3 3.0 1
Azuklotz no no 2 4 4 4 4 4 3.7 1
Johnston no no 2 4 4 4 4 4 3.7 1
Sicintine no no 2 4 4 4 4 4 3.7 1
Motase no no 2 4 4 4 4 4 3.7 1
Atna no no 4 4 4 4 4 4 4.0 0
Asitka no no 4 4 4 4 4 4 4.0 0
Damshilgwit no no 4 4 4 4 4 4 4.0 0
Kluatantan no no 4 4 4 4 4 4 4.0 0
Kluayaz no no 4 4 4 4 4 4 4.0 0
Spawning no no 4 4 4 4 4 4 4.0 0
Good =1
OK=2
Poor=3

Very poor=4




49

Table 4. Explanation of data quality characteristics used in Table 3.

Data Type

1 Good

Data Quality

2 OK

3 Poor

4 Very poor, None

Bathymetric charts

PR Data

Current biomass

Smolt size at capacity

Competitors

age @ smolting

CHS Charts or charts of
simple lakes based on
multiple acoustic transects.

Two or more years of
seasonal data.

Measured smolt abundance
and size.

Measured smolts when lake
is at estimated capacity.

Good seasonal acoustic
and 3x7 trawl estimates of
simple limnetic
communities.

Scale aged smolts when
lake is at estimated
capacity.

more complex lakes with
multiple acoustic transects,
not done by CHS.

One year of seasonal data.

Fall acoustic/trawl! estimate,
using 3x7 trawl and a
simple midwater fish (&
competitor community).

Measured smolts over a
wide range of escapements
but probably not at capacity.

Good single acoustic and
3x7 trawl estimates of
simple limnetic
communities.

Scaled aged smolts or fall
fry from a 3x7 trawl over a
wide range of escapements
but probably not at capacity.

Data source unknown
known errors, poor
coverage.

One sampling period only.

Fall acoustic/trawl estimate,
using 2x2 trawl, often with a
complex midwater fish (&
competitor community).

smolts or fall fry sampled
using 3X7 trawl on only a
few occasions.

Potential competitors
detected in non-quantitative
sampling, possibly only in
other lake in watershed.

Scale ages from smolts or
fall fry on only a few
occasions.

none used surface area
from Fish Wizard

Never sampled, used a
similar, nearby lake if
needed.

Never sampled, guessed at
by multiplying Rmax by
mean % currently utilized in
other lakes.

Fall fry sampled using 2x2
trawl or never sampled.

Never sampled.

Never sampled, assumed
to be all age-1.
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Appendix Table 5. Estimated Weekly Area 4 sockeye harvest rates: 1956-2002 (outer Area 3+5
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included starting in 1997)

Week

1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002

1956-59
1960-69
1970-79
1980-89
1990-99
2000-20

Jn 25-1

0.000
0.000
0.000
0.000
0.000
0.144
0.830
0.239
0.000
0.000
0.000
0.305
0.380
0.372
0.509
0.000
0.588
0.504
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.223
0.250
0.000
0.000
0.000
0.000
0.091
0.208
0.512
0.000
0.000
0.409
0.051
0.005

0.000
0.227
0.160
0.022
0.106
0.155

J1-7

0.000
0.000
0.000
0.000
0.000
0.240
0.498
0.395
0.421
0.316
0.385
0.477
0.652
0.416
0.460
0.206
0.707
0.391
0.251
0.755
0.000
0.211
0.332
0.000
0.000
0.000
0.000
0.000
0.000
0.647
0.000
0.000
0.240
0.192
0.235
0.232
0.738
0.407
0.221
0.323
0.401
0.357
0.261
0.000
0.603
0.342
0.203

0.000
0.380
0.331
0.108
0.318
0.383

Ji8-14

0.000
0.000
0.315
0.276
0.000
0.235
0.652
0.303
0.611
0.293
0.377
0.442
0.607
0.415
0.275
0.094
0.597
0.230
0.679
0.683
0.000
0.559
0.730
0.412
0.490
0.469
0.580
0.000
0.000
0.492
0.238
0.133
0.421
0.488
0.158
0.349
0.461
0.557
0.442
0.576
0.644
0.618
0.293
0.000
0.586
0.549
0.652

0.148
0.394
0.426
0.331
0.410
0.596

J15-21

0.585
0.362
0.577
0.168
0.543
0.440
0.623
0.000
0.318
0.550
0.637
0.712
0.605
0.429
0.249
0.183
0.280
0.843
0.657
0.000
0.441
0.458
0.459
0.571
0.587
0.753
0.547
0.074
0.546
0.365
0.134
0.147
0.512
0.395
0.421
0.525
0.329
0.649
0.449
0.635
0.701
0.610
0.251
0.000
0.667
0.556
0.487

0.423
0.485
0.414
0.406
0.457
0.570

JI 22-28

0.393
0.443
0.477
0.154
0.410
0.745
0.306
0.040
0.454
0.327
0.530
0.698
0.595
0.656
0.783
0.368
0.730
0.690
0.722
0.585
0.108
0.538
0.551
0.599
0.400
0.606
0.748
0.337
0.536
0.558
0.579
0.360
0.667
0.193
0.555
0.458
0.541
0.529
0.283
0.517
0.718
0.546
0.000
0.000
0.455
0.603
0.591

0.367
0.476
0.568
0.498
0.415
0.550

J29-04 Au5-11 Aul12-19 Au20-27 Au28-04 Se05-11

0.374
0.617
0.664
0.000
0.517
0.531
0.392
0.149
0.555
0.405
0.740
0.732
0.525
0.490
0.000
0.641
0.391
0.574
0.792
0.315
0.486
0.475
0.000
0.366
0.381
0.325
0.696
0.204
0.428
0.612
0.483
0.273
0.277
0.292
0.409
0.530
0.581
0.463
0.428
0.451
0.505
0.364
0.000
0.000
0.377
0.487
0.683

0.414
0.503
0.404
0.397
0.373
0.516

0.207
0.465
0.415
0.000
0.397
0.517
0.551
0.690
0.532
0.000
0.285
0.547
0.311
0.348
0.382
0.471
0.631
0.578
0.541
0.310
0.690
0.396
0.315
0.633
0.000
0.259
0.494
0.216
0.232
0.402
0.124
0.498
0.720
0.269
0.451
0.355
0.543
0.308
0.317
0.237
0.474
0.076
0.000
0.000
0.268
0.381
0.277

0.272
0.418
0.495
0.321
0.276
0.309

0.377
0.250
0.351
0.633
0.305
0.483
0.260
0.398
0.216
0.385
0.726
0.000
0.415
0.280
0.686
0.696
0.822
0.390
0.000
0.189
0.672
0.452
0.398
0.369
0.000
0.398
0.346
0.524
0.353
0.375
0.383
0.436
0.347
0.242
0.453
0.345
0.468
0.251
0.243
0.458
0.215
0.068
0.000
0.000
0.011
0.343
0.303

0.403
0.347
0.467
0.340
0.250
0.219

0.108
0.117
0.169
0.643
0.322
0.289
0.410
0.648
0.709
0.000
0.436
0.873
0.000
0.000
0.301
0.478
0.565
0.000
0.270
0.132
0.417
0.600
0.000
0.000
0.000
0.481
0.000
0.515
0.182
0.385
0.515
0.385
0.518
0.130
0.124
0.329
0.547
0.316
0.269
0.223
0.000
0.000
0.000
0.000
0.000
0.021
0.272

0.259
0.369
0.276
0.311
0.181
0.098

0.065
0.154
0.153
0.592
0.000
0.193
0.422
0.000
0.271
0.270
0.589
0.000
0.000
0.600
0.578
0.617
0.000
0.000
0.000
0.222
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.106
0.000
0.000
0.000
0.147
0.156
0.104
0.084
0.049
0.052
0.228
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.241
0.235
0.142
0.051
0.041
0.000

0.000
0.260
0.052
0.356
0.188
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.155
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.167
0.019
0.000
0.000
0.016
0.000
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