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Introduction

In this paper we apply a regime-shift detection methodology to uncover changes
in the Ricker productivity parameter for salmon conservation units (CUs) in the
Skeena watershed. In this paper, the term “regime shift” refers to the statistical
concept of an abrupt change or discontinuity in the value of a model parameter,
in the present case, the productivity parameter in the Ricker (1954) stock-
recruitment model. The productivity parameter can help estimate sustainable
harvest levels for individual CUs and inform appropriate management reference
points. Therefore it is important to be able to detect, in a timely fashion,
significant changes in productivity so that management decisions can be updated
as appropriate.

Numerous studies have established that productivity varies with time for
salmon stocks. For instance, Adkison et al. (1996) found that productivity
for sockeye salmon stocks in Bristol Bay, Alaska increased rapidly in the 1970s.
Peterman and Dorner (2012) demonstrated a sharp decrease in the productivity
of Skeena sockeye stocks, beginning in the late 1980s and persisting through the
1990s. Using the methodology that we herein propose, Mueter et al. (2007)
reported evidence for shifts in productivity for Pacific salmon stocks in 1974,
and again in the late 1980s to mid 1990s.

We use the STARS algorithm developed by Rodionov (2004) to test for shifts
in productivity. This method has several advantages over other regime-detection
methodologies, notably that it can be used reliably toward the endpoints of time
series, and has the ability to detect multiple shifts within the same series. The
use of a discrete change framework, wherein productivity changes discretely and
is constant between these changes, may also be of utility to stock management.
For example, other techniques used to model changing productivity, such as
the Kalman filter approach advocated by Peterman et al. (2000), require an-
nual updating of productivity and hence of management targets. Alternatively,
by modelling productivity as remaining constant between infrequent, discrete
changes, management targets need only be updated when evidence of significant
changes in productivity arrives.

The remainder of our report is structured as follows: Section 1 describes in
detail our method of detecting changes in productivity, Section 2 presents our
results, and Section 3 provides a brief discussion on the utility of our method
for stock management.
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1 Methods

We employ a two-stage method to detect and measure the size of shifts in
productivity in Skeena salmon CUs. The first stage of the analysis uses the
regime shift detection algorithm called STARS (for sequential t-test of analysis
of regime shifts) to detect and time the occurrence of changes in productivity for
each CU. The second stage uses the productivity shift timing estimated in the
first stage to fit a stock-recruitment model in which the value of the productivity
parameter is allowed to vary between different periods; the endpoints of these
periods are determined by the estimated productivity shift dates. From this
model, the resulting differences in the productivity parameter in each period is
recovered, which enables us to compute the resulting changes in management
statistics that depend on the value of the productivity parameter.

1.1 Detection and Timing of Productivity Changes

We fit the popular stock-recruitment model of Ricker (1954) to the stock-
recruitment time series for each CU. The stock-recruitment relationship is given
by

Ri,ti,j = Si,ti,j exp
[

αi − βiSi,ti,j + ωi,ti,j

]

(1)

The notation in equation (1) is as follows:

• i is an index denoting the CU;

• j = 1, . . . , ki is an index denoting the observation number within the time-
series for CU i, with ki denoting the number of observations available for
CU i;

• ti,j is a time index denoting the brood year for the jth observation within
the time-series for CU i, with ti,1 < · · · < ti,ki

;

• Ri,ti,j and Si,ti,j are respectively the recruitment and escapement levels
for CU i in brood year ti,j ;

• ωi,ti,j is an error term, representing random variation around the mean
stock-recruitment curve; and

• αi and βi are parameters, respectively representing the logarithm of pro-
ductivity and the density-dependent effect for CU i.

In this specification, the parameter βi is equal to the reciprocal of Smax, the
stock that maximizes recruitment. Throughout, we assume that βi is constant
through time. Linearizing equation (1) yields the alternate form

log
(

Ri,ti,j/Si,ti,j

)

= αi − βiSi,ti,j + ωi,ti,j , (2)

allowing the stock-recruitment relationship to be estimated using standard linear
techniques.

3



Because past values of recruitment affect stock abundance, the error series
in equation (2) are likely not to be statistically independent. In order to use
the STARS algorithm, it is essential that the series of residuals resulting from
estimating equation (2) be statistically independent. Therefore, we model the
error term as an AR(1) process:

ωi,t = ρiωi,t−1 + εi,t, |ρi| < 1, εi,t ∼ N
(

0, σ2
i

)

, (3)

where ρi is the autocorrelation between consecutive values of the error term,
and εi,t is the white noise component of the error, and is uncorrelated between
observations. Note that in equation (3), the lagged error term appearing on
the right-hand side is from the previous brood year, which is not necessarily
the previous observation in the time series for a given CU. That is, when the
available time series for a particular CU contains a missing observation (such
that for some observation j, ti,j − ti,j−1 > 1), the autocorrelation between the
jth error term and the (j−1)th error term is no longer equal to ρi. Instead, the
autocorrelation decays exponentially according to the length of time between
observations:

Corr(ωi,ti,j , ωi,ti,j−1
) = ρ

∆ti,j
i , (4)

where ∆ti,j = ti,ti,j − ti,j−1 is the number of brood years between observations.
When there is no gap between observations, ∆ti,j = 1 and so the autocorrelation
reduces to ρi.

We use the correlation structure in equation (4) to estimate equation (2)
by generalized least squares (GLS). The residuals obtained from this GLS fit,
denoted by wi,ti,j , are then differenced and scaled to obtain an independent and
identically-distributed series that is used as input into the STARS algorithm.
The input series {ei,j} is constructed as

ei,j =
wi,ti,j − ρ̂

∆ti,j
i wti,j−1

√

σ̂2
i

∑∆ti,j−1

ν=0 ρ̂2νi

, ei,1 =

√

1− ρ̂2i
σ̂2
i

wi,ti,1 ; (5)

in equation (5), ρ̂i and σ̂2
i denote the GLS estimates of ρi and σ2

i , respectively.
If the value of the productivity parameter αi is constant throughout the pe-

riod of observation for CU i, then model (1) is well-specified, and the resulting
series of normalized residuals will have a constant mean throughout the sam-
ple. Alternatively, if there is a shift in productivity at some point during the
series, then equation (1) is misspecified and the error term will no longer have a
constant mean throughout the time series. This is why we use the standardized
residuals series as an indicator of changes in productivity: abrupt changes in
the value of αi, the productivity parameter, will manifest as abrupt changes in
the mean value of the series of standardized residuals.

We use the STARS algorithm developed by Rodionov (2004), which conducts
running t-tests at each observation of the following hypothesis: the current
mean value for the series differs from its value in previous periods. A given
observation is flagged as potentially being the beginning of a productivity shift
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in the mean when that observation differs from the current mean at a significance
threshold p. As further observations are added, these observations are used to
test the hypothesis that the mean value of the series has changed in the direction
indicated by the flagged observation. If, after a predetermined number (M) of
observations past the flagged observation, the hypothesis that the mean has
changed has not been rejected, a productivity change is declared at the flagged
observation and testing continues with the new estimated value of the mean.
Use of the STARS algorithm thus requires the choice of two parameters, the
significance level p and the assumed period length M (in years). Following
Mueter et al. (2007), we use the values p = 0.10, M = 10. Choosing p = 0.10
makes the algorithm more sensitive to potential changes in productivity than a
smaller value of p; however, practically all of the changes in productivity that
we detected using p = 0.10 were large enough to be significant at p = 0.05, so
our choice of the threshold p would not introduce a significant amount of error.
In reporting our results below, we exclude shifts that are detected with fewer
than three observations remaining in the time series, to avoid the possibility of
declaring a productivity change on the basis of a single outlier near the end of
a series.

The STARS algorithm has at least two important advantages over other
methods of change detection. Firstly, it allows for the detection of multiple
changes, where certain other methods assume only one change. Because some
of the stock-recruitment series that we consider span more than fifty years, it
seems plausible that productivity might shift more than once over the span of
the series. Secondly, it allows changes in productivity to be detected up to the
end of the time series, while other change detection methods deteriorate toward
the end of the sample (Rodionov, 2004).

1.2 Quantification of Changes in Productivity

Once we obtain timings of productivity changes from the STARS method, for
each CU in which we detect a change, we estimate a modified version of equation
(2), which allows for different levels of productivity in between each change:

log
(

Ri,ti,j/Si,ti,j

)

= αi +

Ti
∑

r=2

δi,rτr,i,ti,j − βiSi,ti,j + ωi,ti,j , (6)

where the parameters δi,2, . . . , δi,Ti
are contrasts in productivity between the rth

period and the first period for CU i; Ti is the number of productivity changes
detected for CU i, plus one. The endpoints of the periods are determined by
the estimated dates of the changes in productivity for the CU. The variables
τr are indicators of the current period; τr,i,ti,j is set to 1 if brood year ti,j lies
within the rth period for CU i, and is set to 0 otherwise. Hence, productivity
during the first period for CU i is αi, and in subsequent periods r ≥ 2 is equal
to αi + δi,r; positive values of δi,r indicate increases in productivity, relative to
the first period, and negative values indicate decreases in productivity.
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Having estimated the timing, size and direction of productivity changes for
each CU, we proceed to translate these changes into their effects on two manage-
ment indicators, the optimal harvest rate (Uopt) and the maximum sustainable
yield (Smsy). Both of these indicators are increasing in the productivity param-
eter αi, and are easily computed from estimates of productivity.
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2 Results

2.1 Presence and Timing of Shifts in Productivity

Several CUs had insufficient data to be analyzed (Table 1). For those CUs
that we were able to analyze, the presence of structural breaks in productivity
differs significantly between species (Table 2; Figures 1–6). For instance, only
one third of Chinook and chum CUs showed significant shifts in productivity
(Chinook: Lower Skeena and Upper Bulkley; chum: Lower Skeena), while all
but one of the coho and pink CUs (Middle Upper Skeena Odd pink) failed to
exhibit a shift in productivity. Alternatively, the sockeye CUs were more evenly
split between those in which a shift in productivity was detected (all four of
the Babine runs, plus Kitsumkalum and Stephens) and those in which no shift
was detected (Alastair, Azuklotz, Bear, Lakelse, Mcdonell, Morice and Swan).
Note also that six sockeye CUs (Asitika, Damshilgwit, Johnston, Kitwancool,
Motase, and Skeena River High) had insufficient data to be analyzed.

The sockeye CUs were both the largest in number in the analysis and the
most varied in terms of data quality and the presence of productivity changes.
Several of the sockeye CUs had long stock-recruitment series with few gaps,
while the stock-recruitment series for other sockeye CUs covered short time
intervals or were very sparse (Figures 5 and 6). In particular, the Babine CUs,
Alastair, and Kitsumkalum all had time series covering a period in excess of
fifty years, with only a very small number of gaps in the series or no gaps at
all. Of these data-rich CUs, all except for Alastair showed significant evidence
of a change in productivity. Of the remaining sockeye CUs analyzed (Azuklotz,
Bear, Lakelse, Mcdonell, Morice, Stephens, and Swan), only Stephens showed
evidence of a productivity change.

In terms of the timing of detected productivity changes, most changes were
found in the mid- to late-1990s or early 2000s, although there were a few ex-
ceptions. A productivity change was found in 1966 for the Lower Skeena coho
CUs, and two sockeye CUs, Babine Enhanced and Kitsumkalum, experienced
productivity changes in the 1970s (1977 and 1978, respectively).

2.2 Size and Direction of Detected Productivity Changes

Both the magnitude and direction of the changes in productivity showed consid-
erable variation (Table 3). Of the fifteen CUs in which changes in productivity
were detected, nine experienced significant (p < 0.05) declines in productivity.
In many cases the changes in productivity were quite large; for instance, de-
creases in the productivity parameter αi were larger in magnitude than 2.0 for
the Babine Late Wild and Babine Mid Wild CUs. Babine Enhanced, the only
CU to experience multiple productivity shifts, experienced both increases and
decreases in productivity. In this CU productivity was at its highest following
a positive shift estimated to occur in 1977; towards the end of the series, in
2005, an additional shift resulted in productivity decreasing below its level at
the beginning of the series.
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In general, there were two clusters of changes in productivity (Figure 7). The
earlier cluster occurred in the late 1960s to late 1970s, and involved increases in
productivity (the exception was the Lower Skeena chum CU, where a decrease
in productivity was detected in 1966). The later cluster, occurring in the mid
1990s to mid 2000s, generally saw decreases in productivity; of the 12 CUs
experiencing productivity changes in this period, 9 significantly decreased in
productivity, compared to 2 that significantly increased in productivity.

2.3 Effect of Productivity Changes on Management Indi-

cators

As management statistics like the optimal harvest rate (Uopt) and the stock that
maximizes yield (Smsy) depend on the value of the productivity parameter α,
the shifts in productivity that we detected imply corresponding shifts in these
statistics (Tables 4 and 5). In general, CUs that experienced smaller changes in
productivity tended to experience smaller changes in Uopt than CUs that expe-
rienced larger changes in productivity. For example, the Lower Skeena Chinook
CU experienced relatively small changes in both the productivity parameter
αi and in Uopt (−0.32 and −0.09, respectively) compared to the changes that
were detected in the Babine Late Wild sockeye CU (changes of −2.05 in the
productivity parameter and −0.65 in Uopt). However, this trend was not uni-
versal; this is because Uopt is a nonlinear function of α and hence the change
in Uopt depends not only on the size of the change in α, but also on its value
before the change. Because Smsy depends on the density-dependent effect β as
well as on productivity, changes in Smsy did not correspond in any consistent
way to changes in productivity. In general, the pink salmon CUs experienced
the largest changes in maximum sustainable yield, while experiencing moderate
changes in the level of the productivity parameter α. This is indicative of the
size of these CUs relative to the CUs of other species. By and large, of the CUs
where productivity changes were detected, the largest ones experienced nega-
tive shifts in productivity, so that on aggregate the result was a negative shift
in maximum sustainable yield.
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3 Discussion

Several past studies have used a variety of techniques to study changes in pro-
ductivity in salmon stocks. For instance, a recent study by Peterman and Dorner
(2012) used Kalman filtering techniques to uncover evidence for large declines
in productivity of sockeye salmon stocks in the Skeena watershed, beginning in
the late 1980s and continuing throughout the 1990s. Our results for the Babine
CUs are consistent with this finding. We detected decreases in productivity for
each of the Babine CUs between 1993 and 2005; note that two such decreases
were detected for Babine Enhanced, one in 1993 and another in 2005. We also
detected an increase in productivity for the Stephens sockeye CU. Because this
CU is quite small when compared to the Babine CUs, on the whole it would seem
that the positive change in the productivity of this one CU was overshadowed
by decreases in productivity for the larger Babine CUs.

The use of a discrete change approach to modelling productivity offers a
possibly attractive method of measuring productivity changes for fisheries man-
agers. Models where changes in productivity occur consistently require constant
updating of models, such as through a Kalman filter, in order to produce up-
to-date productivity (and hence benchmark) estimates. Furthermore, it may
not be practical to change escapement goals or harvest rates on a yearly basis.
Modelling productivity as changing discontinuously and remaining constant be-
tween those changes allows a constant target to be set, and when significant
evidence is received to indicate a shift in productivity, appropriate management
action can be taken to adjust targets in response. Methods for productivity
change detection, such as the STARS algorithm, can be tuned by choice of the
algorithm parameters (in this case, the significance level p and period length
M), in order to achieve an appropriate level of sensitivity to changes in the
productivity parameter.
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Table 1: List of CUs included in (top half) and excluded from (bottom half)
the STARS analysis. Column “Gaps” indicates the number of contiguous sets
of observations in the time series that are incomplete due to missing stock or
recruitment data.
Species Included CUs Total Observations Gaps
Chinook Kalum early 24 0

Kalum late 25 0
Lower Skeena 22 0
Mid Skeena Large Lakes 25 0
Mid Skeena Main Tributaries 24 1
Upper Bulkley 18 0

Chum Lower Skeena 45 2
Middle Skeena 35 5
Skeena Estuary 17 6

Coho Lower Skeena 53 0
Middle Skeena 53 0

Pink Lower Skeena Odd 27 0
Middle Upper Skeena Even 28 0
Middle Upper Skeena Odd 27 0
Nass Skeena Estuary Even 28 0
Nass Skeena Estuary Odd 27 0

Sockeye Alastair 47 1
Azuklotz 20 4
Babine Early Wild 48 0
Babine Enhanced 48 0
Babine Late Wild 48 0
Babine Mid Wild 48 0
Bear 16 6
Kitsumkalum 45 2
Lakelse 39 2
Mcdonell 28 4
Morice 42 5
Stephens 35 6
Swan 22 7

Species Excluded CUs Total Observations Gaps
Chinook Ecstall 6 0
Chum —
Coho Upper Skeena 14 1
Pink —
Sockeye Asitika 2 0

Damshilgwit 5 0
Johnston 12 3
Kitwancool 6 1
Motase 12 2
Skeena River High 2 0
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Table 2: Date of productivity changes detected by the STARS algorithm for each
CU. A dash indicates that no productivity change was found for the indicated
CU. Column “ID” indicates the code used to identify the CU in Figure 7.
ID CU Productivity Shifts

Chinook

CN01 Kalum early —
CN02 Kalum late —
CN03 Lower Skeena 1999
CN04 Mid Skeena Large Lakes —
CN05 Mid Skeena Main Tributaries —
CN06 Upper Bulkley 1995

Chum

CM01 Lower Skeena 2003
CM02 Middle Skeena —
CM03 Skeena Estuary —

Coho

CO01 Lower Skeena 1966
CO02 Middle Skeena 1995

Pink

PK01 Lower Skeena Odd 1995
PK02 Middle Upper Skeena Even 1996
PK03 Middle Upper Skeena Odd —
PK04 Nass Skeena Estuary Even 2004
PK05 Nass Skeena Estuary Odd 1979

Sockeye

SX01 Alastair —
SX02 Azuklotz —
SX03 Babine Early Wild 2003
SX04 Babine Enhanced 1977, 1993, 2005
SX05 Babine Late Wild 2003
SX06 Babine Mid Wild 2005
SX07 Bear —
SX08 Kitsumkalum 1978
SX09 Lakelse —
SX10 Mcdonell —
SX11 Morice —
SX12 Stephens 1999
SX13 Swan —
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Table 3: Contrasts in the productivity parameter αi relative to the first period
for each CU in which a productivity change was detected. Endpoints for periods
are determined by the dates of the detected changes in productivity, given in
Table 2, with “Period 1” referring to the time period from the beginning of the
stock-recruitment series for the CU up to the first productivity change that was
detected for the CU. *: Significant at the 10% level. **: Significant at the 5%
level. ***: Significant at the 1% level. Column “ID” indicates the code used to
identify the CU in Figure 7.

Productivity relative to Period 1 in
ID CU Period 2 Period 3 Period 4

Chinook

CN03 Lower Skeena −0.32 ** — —
(0.14)

CN06 Upper Bulkley +0.61 — —
(0.41)

Chum

CM01 Lower Skeena −1.70 ** — —
(0.75)

Coho

CO01 Lower Skeena −1.23 *** — —
(0.35)

CO02 Middle Skeena +1.16 *** — —
(0.28)

Pink

PK01 Lower Skeena Odd −0.69 ** — —
(0.32)

PK02 Middle Upper Skeena Even −1.08 *** — —
(0.38)

PK04 Nass Skeena Estuary Even −0.99 ** — —
(0.46)

PK05 Nass Skeena Estuary Odd +1.04 *** — —
(0.34)

Sockeye

SX03 Babine Early Wild −1.91 *** — —
(0.38)

SX04 Babine Enhanced +1.16 *** +0.32 −1.05 *
(0.32) (0.37) (0.56)

SX05 Babine Late Wild −2.05 *** — —
(0.43)

SX06 Babine Mid Wild −2.43 *** — —
(0.49)

SX08 Kitsumkalum +1.11 *** — —
(0.41)

SX12 Stephens +1.09 * — —
(0.62)
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Table 4: Contrasts in the optimal harvest rate Uopt implied by the contrasts
in the productivity parameter αi presented in Table 3. Endpoints for periods
are determined by the dates of the detected changes in productivity, given in
Table 2, with “Period 1” referring to the time period from the beginning of the
stock-recruitment series for the CU up to the first productivity change that was
detected for the CU.

Uopt relative to Period 1 in
CU Period 2 Period 3 Period 4

Chinook

Lower Skeena −0.09 — —
Upper Bulkley +0.18 — —

Chum

Lower Skeena −0.48 — —
Coho

Lower Skeena −0.25 — —
Middle Skeena +0.24 — —

Pink

Lower Skeena Odd −0.21 — —
Middle Upper Skeena Even −0.34 — —
Nass Skeena Estuary Even −0.34 — —
Nass Skeena Estuary Odd +0.35 — —

Sockeye

Babine Early Wild −0.61 — —
Babine Enhanced +0.20 +0.07 −0.34
Babine Late Wild −0.65 — —
Babine Mid Wild −0.62 — —
Kitsumkalum +0.36 — —
Stephens +0.07 — —
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Table 5: Contrasts in Smsy, the maximum sustainable yield, implied by the
contrasts in the productivity parameter αi presented in Table 3. Endpoints
for periods are determined by the dates of the detected changes in productivity,
given in Table 2, with “Period 1” referring to the time period from the beginning
of the stock-recruitment series for the CU up to the first productivity change
that was detected for the CU.

Smsy relative to Period 1 in
CU Period 2 Period 3 Period 4

Chinook

Lower Skeena − 200 — —
Upper Bulkley + 230 — —

Chum

Lower Skeena − 22,542 — —
Coho

Lower Skeena − 36,482 — —
Middle Skeena + 25,591 — —

Pink

Lower Skeena Odd −399,042 — —
Middle Upper Skeena Even −332,240 — —
Nass Skeena Estuary Even −595,361 — —
Nass Skeena Estuary Odd +130,976 — —

Sockeye

Babine Early Wild − 38,267 — —
Babine Enhanced + 69,160 +25,767 −119,552
Babine Late Wild −189,473 — —
Babine Mid Wild − 15,066 — —
Kitsumkalum + 5,780 — —
Stephens + 271 — —
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Figure 1: Standardized residuals from the stock-recruitment model 2 (solid line), along with mean values for the periods in
between the productivity changes detected by the STARS method (dashed line), with M = 10, p = 0.1, for Chinook CUs.
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Figure 2: Standardized residuals from the stock-recruitment model 2 (solid line), along with mean values for the periods in
between the productivity changes detected by the STARS method (dashed line), with M = 10, p = 0.1, for chum CUs.
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Figure 3: Standardized residuals from the stock-recruitment model 2 (solid line), along with mean values for the periods in
between the productivity changes detected the STARS method (dashed line), with M = 10, p = 0.1, for coho CUs.
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Figure 4: Standardized residuals from the stock-recruitment model 2 (solid line), along with mean values for the periods in
between the productivity changes detected by the STARS method (dashed line), with M = 10, p = 0.1, for pink CUs.
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Figure 5: Standardized residuals from the stock-recruitment model 2 (solid line), along with mean values for the periods in
between the productivity changes detected by the STARS method (dashed line), with M = 10, p = 0.1, for sockeye CUs.
(Continued in Figure 6.)
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Figure 6: Standardized residuals from the stock-recruitment model 2 (solid line), along with mean values for the periods in
between the productivity changes detected by the STARS method (dashed line), with M = 10, p = 0.1, for sockeye CUs.
(Continued from Figure 5.)
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Figure 7: Timing and magnitude of shifts in productivity parameter α for CUs in which productivity shifts were detected.
Contrasts in α are presented relative to the first value for each CU, so that values above the horizontal line indicate changes
to productivity levels above their initial value, and values below the vertical line indicate changes to productivity levels below
their initial value. Identifiers correspond to CUs appearing in Tables 2 and Tables 3.
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