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Abstract.—Using comprehensive data sets for chum salmon Oncorhynchus keta (40 stocks) and sockeye

salmon O. nerka (37 stocks) throughout their North American ranges, we compared the retrospective

performance of 11 models in preseason forecasting of adult abundance. Chum and sockeye salmon have more

complicated age structures than pink salmon O. gorbuscha, which we investigated previously (Haeseker et al.
2005), and this complexity presents new challenges as well as opportunities for forecasting. We extended our

previous work to include two new forecasting models that make use of leading indicators: either the survival

rate of earlier-maturing pink salmon from the same brood year (Ricker pink salmon index model) or the
abundance of earlier-maturing siblings (hybrid sibling model, a new version of the standard sibling model).

No single forecasting model was consistently the best for either chum or sockeye salmon, but the hybrid

sibling model frequently performed best based on mean absolute error, mean percent error, and root mean

square error. As was observed for pink salmon, several naı̈ve models (i.e., simple time series models without
explicitly modeled mechanisms) also performed well, as did forecast averaging models composed of two

models with the least-correlated forecasting errors. In general, model ranking depended on the particular stock

and performance measure used. However, even the top-ranked model for each stock explained on average

only 21% of the observed interannual variation in chum salmon recruitment and only 36% of the variation in
sockeye salmon recruitment. Although improvements may be possible for some stocks in specific

circumstances, a major breakthrough in general forecasting ability seems unlikely given the breadth of stocks

and models examined to date. Therefore, better in-season updates and adjustments to fishing regulations and a
cautious approach to opening and closing fisheries should remain high priorities.

Prior to the start of each annual fishing season,

management agencies on the West Coast of North

America forecast the abundances of salmon Oncorhyn-
chus spp. by region to provide input to planning by

fisheries managers, the fishing industry, and First

Nations (e.g., Alaska Department of Fish and Game

2006; Cass et al. 2006; Washington Department of Fish

and Wildlife 2006). Generally, these preseason fore-

casts have wide confidence intervals, and the actual

abundances of adult recruits routinely differ from mean

or median forecasts—often by large amounts—because

of unpredictable variations in factors such as marine

survival rates (Fried and Yuen 1987; Cross and Gray

1999; Adkison 2002). Although management agencies
subsequently use in-season updates of abundance
estimates to adjust management regulations, such
differences between actual recruits and preseason
forecasts usually result in missed management targets,
reduced economic benefits, or increased conservation
concerns (Bocking and Peterman 1988; Holt and
Peterman 2006).
For many years, scientists have developed and

applied a wide variety of forecasting models to
improve on this situation. Models vary from simple
moving-average time series models (Wood et al. 1997)
to complex stock–recruitment models that include
environmental variables (Adkison et al. 1996) or even
non-mechanistic models based on neural networks
(Zhou 2003). These models have had varying, but
generally poor success at forecasting past abundances
(Fried and Yuen 1987; Adkison and Peterman 2000;
Cass et al. 2006).
One problem that may have hindered development

of better forecasting models is the lack of extensive
testing of each model across a wide range of
populations and regions. When performance has been
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compared among multiple models, it has usually been
within particular regions and species, such as northern
or southern British Columbia (BC) sockeye salmon O.
nerka (Wood et al. 1997; Cass et al. 2006) or southeast
Alaska pink salmon O. gorbuscha (Adkison 2002). An
exception to these regionally based studies is our
previous work (Haeseker et al. 2005), which evaluated
the forecasting ability of eight preseason forecasting
models for 43 pink salmon stocks from Washington
State, BC, and Alaska over a total of 783 stock-years.
We (Haeseker et al. 2005) evaluated those eight models
for each pink salmon stock by means of retrospective
analysis, a type of cross validation (Shao 1993) that
uses historical data up to a given year to fit various
forecasting models, makes forecasts of the next year’s
recruitment, compares forecasts with the actual ob-
served recruitment, adds that new actual data point into
the database, re-fits the models, makes forecasts for the
next year, and so on through the entire data set. The
performance of each model is then summarized across
years.
We found that no single forecasting model was

consistently the best performer across the 43 pink
salmon stocks (Haeseker et al. 2005). However, we
found that two naı̈ve time series models (i.e. those
without explicitly modeled mechanisms) performed
best more frequently than other models, although there
were specific populations for which other, more
complex models made better forecasts (Haeseker et
al. 2005). For instance, in 21% of the populations, the
best forecasts were made by a multistock mixed-effects
(ME) stock–recruitment model, which included early
summer sea surface temperature (SST) as an indepen-
dent variable along with spawner abundance (Mueter et
al. 2002a).
Here we extend our retrospective evaluation of a

variety of forecasting models for pink salmon popula-
tions by applying a similar approach to evaluating
forecasting models for 40 populations of chum salmon
O. keta and 37 populations of sockeye salmon. We
sought to determine (1) whether particular models
might be more widely beneficial across chum and
sockeye populations than in our pink salmon analysis,
(2) whether overall average forecasting errors would be
larger or smaller for chum and sockeye salmon than for
pink salmon, and (3) whether the multiple ages at
maturity for chum and sockeye salmon help or hinder
forecasting performance. Several forecasting models
that we investigated for chum and sockeye salmon
were the same as or similar to those used for pink
salmon (Haeseker et al. 2005), but a few models were
new because of differences in age structure between the
species. Unlike pink salmon, which all mature at age 2,
chum and sockeye salmon typically mature and return

to their natal spawning areas as recruits of age 3–6
depending on the region (Groot and Margolis 1991).
Spawners of all three species die after spawning.
Complexity in age structure presents new challenges
and opportunities for forecasting that do not arise in the
forecasting of pink salmon populations. Challenges
exist owing to interannual variability in age structure,
and opportunities arise through using abundances of
younger-aged fish as leading indicators of a subsequent
year’s abundance.
We evaluated two chum and sockeye salmon

forecasting models that used such leading indicators.
One incorporated indices of early ocean survival based
on nearby pink salmon populations that entered the
ocean during the same year as chum salmon fry and
sockeye salmon smolts (Anderson and Bailey 1974).
The other was a variant on what we call a standard
sibling model, which describes the relationship be-
tween returns of successive age-classes produced in the
same brood year (Alaska Department of Fish and Game
1981; Peterman 1982). These and other models are
detailed below. Altogether, we compared the efficacy
of 11 types of forecasting models for chum and
sockeye salmon.

Methods

Data.—We compiled data on the abundance of
spawners and recruits for 37 sockeye salmon stocks
and 40 chum salmon stocks in the northeastern Pacific
from northwestern Alaska to southwestern Washington
(USA) and including BC (Tables 1, 2). The stocks in
this analysis encompass nearly all of the major sockeye
and chum salmon stocks managed in the Northeast
Pacific. Spawner abundance (S) included both sexes;
recruits (R) included S and total catch of both sexes.
Time series of S and R ranged in duration from 22 to 47
years (average ¼ 40 years) for sockeye salmon stocks
and from 15 to 35 years (average¼ 26 years) for chum
salmon stocks. Further details on data sources and their
compilation can be found in Peterman et al. (1998),
Mueter et al. (2002b), and Pyper et al. (2002). The age
composition data for adult recruits were sufficient to
develop sibling models for all 37 sockeye salmon
stocks but only 21 of the 40 chum salmon stocks
(Table 2). For each of the remaining 19 chum salmon
stocks, the age composition was assumed to be
identical over time to the average age composition of
the nearest neighboring chum salmon stock.
Two of the models used early summer SST as an

explanatory variable because it helps explain some of
the variation in survival rates of pink, chum, and
sockeye salmon (Mueter et al. 2002a). The SST data
were compiled from the Comprehensive Ocean-Atmo-
sphere Data Set (COADS; www.cdc.noaa.gov/coads)
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and were summarized using the methods described by
Mueter et al. (2002b). The SST time series used in our
forecasting models represent the SST anomalies (8C)
from long-term means at each location corresponding
to the coastal areas occupied by each sockeye or chum
salmon stock during early ocean residence (April–July
for stocks in Washington, BC, and southeastern
Alaska; May–August for most Alaska stocks; and
June–September for western Alaska stocks; further
details are given in Mueter et al. 2002a).
We also examined a model for forecasting sockeye

and chum salmon recruitment that relied partly on data
for pink salmon from the same region. Previous work
showed statistically significant (P , 0.05), positive
correlations between marine survival rates of pink and
chum salmon from the same brood year in southern BC

(e.g., Anderson and Bailey 1974; Peterman 1987). In
their broader analyses of more than 110 populations
from Washington, BC, and Alaska, Pyper et al. (2005)
found that region-specific survival rate indices of pink,
chum, and sockeye salmon stocks were positively
correlated when cohorts of juveniles had the same year
of ocean entry; pink and chum salmon survival rates
were more strongly correlated than those of pink and
sockeye salmon. If shared environmental conditions
cause survival rates to be positively correlated between
species, then survival rates for earlier-returning age-2
pink salmon from a given brood year could be used to
forecast survival rates, and hence recruitment, of later-
returning age-3 or older (age-3þ) sockeye and chum
salmon from the same brood year.

To evaluate the forecasting utility of this positive

TABLE 1.—Summary of data sets for 37 wild sockeye salmon stocks used in an analysis of adult abundance forecasting models
(N¼ the number of complete brood years available). This information was adapted from Peterman et al. (1998) and Mueter et al.
(2002b).

Region Stock number Stock or district Brood years N Sourcea

Washington 1 Lake Washington 1967–1993 27 1
Fraser River, British Columbia 2 Adams 1950–1996 47 2

3 Birkenhead 1950–1996 47 2
4 Bowron 1950–1996 47 2
5 Chilko 1950–1996 47 2
6 Cultus 1950–1996 47 2
7 Gates 1952–1996 45 2
8 Horsefly 1950–1996 47 2
9 Nadina 1950–1996 47 2
10 Pitt 1950–1996 47 2
11 Portage 1950–1996 47 2
12 Raft 1950–1996 47 2
13 Seymour 1950–1996 47 2
14 Stellako 1950–1996 47 2
15 Early Stuart 1950–1996 47 2
16 Late Stuart 1950–1996 47 2
17 Weaver 1950–1996 47 2

Central British Columbia 18 Long Lake 1973–1994 22 3
Northern British Columbia 19 Skeena 1959–1994 26 4

20 Nass 1967–1991 25 4
Central Alaska 21 Copper 1961–1993 33 5

22 Cook 1968–1992 25 6
Southwestern Alaska 23 Ayakulik 1965–1993 29 7

24 Frazer 1965–1993 29 7
25 Early Upper Station 1969–1993 25 7
26 Late Upper Station 1970–1993 24 7
27 Black 1950–1993 44 7
28 Chignik 1950–1993 44 7

Bristol Bay, Alaska 29 Branch 1956–1995 40 8
30 Egegik 1956–1995 40 8
31 Igushik 1956–1995 40 8
32 Kvichak 1956–1995 40 8
33 Naknek 1956–1995 40 8
34 Nuyakuk 1956–1995 40 8
35 Togiak 1956–1995 40 8
36 Ugashik 1956–1995 40 8
37 Wood 1956–1995 40 8

a Sources are personal communications from (1) Jeff Haymes, Washington Department of Fish and
Wildlife, Montesano; (2) Jim Woodey, Pacific Salmon Commission, Vancouver, BC; (3) Chris
Wood, Canada Department of Fisheries and Oceans (CDFO), Nanaimo, BC; (4) L. Jantz, CDFO,
Prince George, BC; (5). John Wilcock, Alaska Department of Fish and Game (ADFG), Cordova; (6)
David Waltemyer, ADFG, Soldotna; (7) Patti Nelson, ADFG, Kodiak; and (8) Bev Cross, ADFG,
Anchorage.
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association between pink salmon and either sockeye or

chum salmon, we added an index of pink salmon

survival rate as another independent variable (besides

spawners) to a Ricker stock–recruit model for fore-

casting chum and sockeye salmon recruitment. This

annual index was derived as follows. For each of the 43

pink salmon populations from Washington to Alaska,

we fit a standard Ricker model to the pink salmon

spawner–recruit data and calculated time series of

annual log
e
(R/S) residuals from that model, producing

an index of brood year survival that removed within-

stock, density-dependent effects. Pyper et al. (2001:

TABLE 2.—Summary of data sets for 40 wild chum salmon stocks used in an analysis of adult abundance forecasting models
(N¼ the number of complete brood years available). Asterisks indicate stocks with sufficient age composition data for sibling
models. This information was adapted from Pyper et al. (2002).

Region Stock number Stock or district Brood years N Sourcea

Washington 1 Willapa Bay* 1968–1993 26 1
2 Grays Harbor* 1969–1993 25 1

Puget Sound, Washington 3 Skagit River* 1968–1993 26 2
4 Nooksack–Somish* 1968–1993 26 2
5 Stillaguamish–Snohomish* 1968–1993 26 2
6 Hood Canal* 1968–1993 26 2
7 South Sound (early)* 1968–1993 26 2
8 South Sound (fall)* 1968–1993 26 2
9 South Sound (winter)* 1968–1993 26 2

Southern British Columbia 10 Fraser (all)* 1959–1992 34 3
11 Inner South Coast less Fraser River* 1959–1992 34 3

Central British Columbia 12 Area 10 1960–1994 35 4
13 Area 9 1960–1994 35 4
14 Area 8* 1960–1994 35 4

Northern British Columbia 15 Area 6* 1965–1992 28 5
Southeastern Alaska 16 Alsekb 1961–1986 26 6

17 Kadashan 1969–1983 15 7
Central Alaska 18 Prince William Sound* 1966–1993 28 8

19 Cook Inlet (outer)c 1964–1993 30 9
20 Cook Inlet (south)d 1964–1993 30 9
21 Cook Inlet (upper) 1972–1993 22 10
22 Kamishake 1968–1993 22 9

Southwestern Alaska 23 Kodiak 1962–1991 20 11
24 Chignik (central) 1962–1991 20 12, 13
25 Chignik (eastern) 1962–1991 20 12, 13
26 Chignik (western) 1962–1991 20 12, 13
27 Perryville 1962–1991 20 12, 13

Alaska Peninsula 28 Northern 1962–1993 32 12, 14
29 Izembek–Moffet 1962–1993 32 12, 14
30 Bechevin–Swanson 1962–1993 32 12, 14
31 Southeast–South-central 1962–1993 32 12, 15
32 Southwest–Unimak 1962–1993 32 12, 15

Bristol Bay, Alaska 33 Nushagak* 1974–1993 20 16
34 Togiak* 1978–1992 15 16

Norton Sound, Alaska 35 Yukon (fall)f* 1974–1995 22 17, 18
36 Anvik* 1972–1993 22 17, 19
37 Andreafsky* 1972–1995 24 17, 20
38 Kwiniuk–Tubutulik* 1965–1995 31 17, 21
39 Norton Sound District 1 1976–1994 19 17, 22
40 Kotzebue Sound* 1962–1979 18 23

a Sources are (personal communication unless otherwise noted) as follows: (1) Rick Brix and John Linth, Washington
Department of Fish and Wildlife (WDFW), Montesano; (2) Jeff Haymes, WDFW, Olympia; (3) Ryall et al. (1999); (4) Ron
Goruk, Canada Department of Fisheries and Oceans (CDFO), Prince Rupert, BC; (5) Les Jantz, CDFO, Prince Rupert; (6)
Tim Zadina, Alaska Department of Fish and Game (ADFG), Ketchikan; (7) Ben Van Alen, ADFG, Douglas; (8) Mark
Willette, ADFG, Soldotna; (9) Ted Otis, ADFG, Homer; (10) Ken Tarbox, ADFG, Soldotna; (11) Kevin Brennan, ADFG,
Kodiak; (12) Denby Lloyd, ADFG, Kodiak; (13) Owen and Sarafin (1999); (14) Murphy et al. (1999); (15) Campbell et al.
(1999); (16) Michael Link, ADFG, Anchorage; (17) Doug Eggers, ADFG, Juneau; (18) Eggers (2001); (19) Clark and
Sandone (2001); (20) Clark (2001a); (21) Clark (2001b); (22) Clark (2001c); and (23) Bigler (1985).

b Spawner abundances for the East Alsek River were used as an index of escapement; catch data were total harvests in
Districts 181–189.

c Sum of Port Graham and Dogfish Lagoon data sets.
d Sum of Port Dick and Rocky River data sets.
e Sum of Bruin, McNeil, Big Kamishak and Little Kamishak rivers, Ursus Cove and Lagoon, and Cottonwood Creek–Iniskin
River data sets.

f Sum of fall run chum for the Tanana River, Yukon River main stem, and Yukon River tributary data sets.
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their Figure 5) identified 14 regions in which these
spawner-to-recruit residuals, or survival rate indices,
were significantly and positively correlated among
stocks. The time series of annual stock-specific
residuals were then standardized to have a mean of 0
and a standard deviation of 1. We then averaged these
standardized values across stocks within each of the 14
regions to provide an annual index of pink salmon
survival for that region. Finally, we assigned each
chum and sockeye salmon stock to 1 of the 14 regions
based on the location of ocean entry. However, the
Willapa Bay and Grays Harbor (Washington) chum
salmon stocks (Table 2) did not have pink salmon
stocks nearby, so we were unable to develop pink
salmon survival indices for these two stocks. To
standardize comparisons across species with different
freshwater life histories, we designated survival indices
by year of ocean entry. Pink and chum salmon both
enter the ocean as age-0 juveniles (fry in brood year tþ
1), whereas sockeye salmon typically enter the ocean
as age-1 or age-2 juveniles (smolts in t þ 2 or t þ 3).
For sockeye salmon stocks with mixed juvenile ages,
we weighted the pink salmon survival indices by the
stock-specific average proportions of juvenile sockeye
salmon entering the ocean at ages 1 and 2.

Models.—We examined a minimum set of models
representing the major types in common use, and we
added a few more that seemed promising. First, we
used three naı̈ve time series models to forecast recruits.
The term ‘‘naı̈ve’’ indicates that the models do not
explicitly include spawner abundance or environmental
variables as independent variables and do not require
statistical parameter estimation. They merely summa-
rize recent information on adult recruits (returns),
which mature and return to freshwater 3–5 years after
being spawned. The first naı̈ve model, R(yr # 1), is

Ryr ¼ Ryr#1 þ eyr; ð1Þ

where R
yr
is the forecasted return for year yr, R

yr#1
is

the observed return during the previous year (yr # 1),
and e

yr
is the residual error, where e

yr
; N(0, r2). The

second naı̈ve model, R(yr # 4), is

Ryr ¼ Ryr#4 þ eyr; ð2Þ

where R
yr#4 is the return 4 years prior to the forecasted

return. This model uses the observed recruitment 4
years prior as the forecast for the current year, as might
seem appropriate in stocks that exhibit 4-year cycles in
abundance. Compared with the other candidate naı̈ve
models, such as an R(yr # 3) or R(yr # 5) model, the
R(yr # 4) naı̈ve model has demonstrated lower root
mean square error (RMSE) of the forecasts for sockeye
and chum salmon stocks, in which fish most commonly

mature at age 4 (Haeseker et al. 2007). The third naı̈ve
model (4-year average) is

Ryr ¼

X4

t¼1

Ryr#t

4
þ eyr; ð3Þ

where R
yr#t is the observed return during year yr# t (t

¼ 1, . . . , 4). This model uses a 4-year moving average
as the forecast for the current year. While recruitment
errors in stock–recruitment models are generally
believed to be multiplicatively lognormal (Peterman
1981), these naı̈ve models may have a different error
structure because they utilize simple summaries of
previous recruitment to forecast future recruitment. In
support of our assumption that recruitment errors for
the naı̈ve models were additive and normal, we found
that the normality assumption for the errors held in the
majority (71%) of the stocks based on Kolmogorov–
Smirnov tests for normality.
The equations and terms pertaining to 5 of the 11

models that we evaluated (Table 3) have been
described previously (Peterman et al. 2000; Mueter et
al. 2002a; Haeseker et al. 2005). Three of these were
linearized versions of the single-stock Ricker stock–
recruitment function to forecast recruits (Ricker; Ricker
autoregressive, AR[1]; and Ricker SST). We also
evaluated a Kalman filter (KF) estimation method of
the Ricker stock–recruitment model (Peterman et al.
2000; Haeseker et al. 2005), which allowed for
temporal changes in productivity (i.e., the Ricker a
parameter). Capitalizing on the recent work of Mueter
et al. (2002a), we evaluated the forecasting perfor-
mance of a hierarchical, multistock, ME Ricker stock–
recruitment model that incorporated SST. This hierar-
chical model takes advantage of the observed similarity
among nearby stocks’ interannual variation in survival
rate, which arises from sharing similar environments
(Peterman et al. 1998; Pyper et al. 2001, 2002; Su et al.
2004). We considered this type of multistock model
because it results in smaller bias and greater precision
in parameter estimates than a model that is fit to data
for a single stock (Su et al. 2004). The ME model was
fit to chum and sockeye salmon stocks separately.
Of the new models we evaluated that are not listed in

Table 3, one was a Ricker model that incorporated an
index of pink salmon survival, namely,

logeðRt=StÞ ¼ a# bSt þ dPItþk þ et; ð4Þ

where d is the estimated effect of the pink salmon
survival index on loge(Rt /St); PItþk is the pink salmon
survival index for the region of covariation encom-
passing the ocean entry point of the stock in year tþ k,
when juvenile chum or sockeye salmon from brood
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year t migrated to the ocean; a and b are estimated
parameters; and et ; N(0, r2

e ). For chum salmon, k
equals 1. In the case of sockeye salmon, k is 2 or 3; the
pink salmon survival index values were weighted
according to the proportion of sockeye salmon smolts
from brood year t that migrated to the ocean in year tþ
2 as opposed to tþ 3. This model is referred to as the
Ricker pink salmon index model. Later, we use the
term ‘‘stock–recruitment-type models’’ to refer to the
group that includes the Ricker, Ricker SST, Ricker
AR(1), KF, ME, and Ricker pink salmon index models.
To generate forecasts of adult recruits produced by

each brood year, R̂t, each model except the naı̈ve
models required back-transformation to estimate the
forecasted mean number of brood year recruits on the
arithmetic scale. Accounting for the well-known bias
associated with back-transforming lognormally distrib-
uted variables (Beauchamp and Olson 1973), forecasts
were generated using the equation

R̂t ¼ exp ŷt þ
r̂2

2

! "
& St; ð5Þ

where R̂
t
is the forecast of the mean number of recruits

resulting from brood year t, ŷt is the estimate of loge(Rt/
St), and r̂2 is the appropriate variance of the residuals;
for the Ricker, Ricker SST, and KF models, r̂2

e was
used in equation (5). For the Ricker AR(1) model, the
residual variance after accounting for autocorrelation
(r̂2

t) was used in equation (5). For the ME model, we
applied equation (5) by estimating the within-stock
residual variance (i.e., r̂2

t ) rather than the overall r̂2
t,

which was estimated based on all stocks combined.
Estimates of brood year recruitment (R̂t) were allocated
to return years (R̂

yr
) according to average age

composition in each stock. Exploratory analyses
revealed that age composition averaged over all brood
years provided more accurate forecasts than did shorter
moving averages.

We also evaluated the forecasting performance of a
new type of sibling model, the hybrid sibling model
described by Haeseker et al. (2007). The standard
sibling model (Peterman 1982) assumes a linear
relation between raw abundances of two sibling groups
in log space, that is,

logeðRd;tÞ ¼ aþ blogeðRd#1;t#1Þ þ et; ð6Þ

where R
d,t

is the abundance of the later-returning
siblings of age d in year t; R

d#1,t#1 is the abundance of
the earlier-returning siblings of age d# 1 in year t# 1;
a and b are estimated parameters; and e

t
; N(0, r2

e ).
This form of error term is based on the frequently
observed multiplicative lognormal variation of salmon
marine survival rates (Peterman 1981). The hybrid
sibling model differs from the standard sibling model
in that it uses the above sibling model equation to
generate a forecast of R

d,t
when the sibling relationship

is ‘‘strong’’ (i.e., characterized by a low r̂2
e ) but uses a

naı̈ve R(t# 4) model when the relationship is ‘‘weak’’
(i.e., characterized by a high r̂2

e ). Thus, the hybrid
sibling model switches between the standard sibling

model and a naı̈ve R(t # 4) model depending on the
residual variance estimate (r̂2

e ) of the sibling relation-
ships. The threshold r̂2

e values used to determine
strong or weak (1.09 for chum salmon, 2.53 for
sockeye salmon) and thus which model to use were
based on optimization analyses (Haeseker et al. 2007).
Haeseker et al. (2007) found that the hybrid sibling
model generally outperformed the standard sibling
model. Because of those results and in an effort to
minimize the number of models evaluated, we only
considered the hybrid sibling model. As with the
Ricker models, generating forecasts of adult recruits
(R̂
'
d;t) based on equation (6) required back-transforma-

tion to estimate the forecasted mean number of recruits
on the arithmetic scale using methods analogous to
those described for equation (5). When a forecast of

TABLE 3.—Equations for 5 of the 11 forecasting models of adult chum and sockeye salmon abundance evaluated in this study.
Symbols are as follows: St is the abundance of spawners in brood year t; Rt is the total abundance of adult recruits produced by
the St spawners; a, at, ai, b, and bi are parameters of the basic Ricker model components; SST is early-summer sea surface
temperature; c is the fixed effect and gi the random effect of SST on loge(R/S); a is a fixed intercept describing productivity
common to all salmon stocks of a given species and area (northern or southern stocks, as described by Mueter et al. 2002a); / is
the first-order autocorrelation coefficient; et ; N(0, r2); and tt ; N(0, rt

2).

Model Equation

Rickera loge(Rt /St) ¼ a # bS þ et
Ricker AR(1)a loge(Rt /St) ¼ a # bSt þ et, where et ¼ /et#1

þ tt
Kalman filtera,b loge(Rt /St) ¼ at # bSt þ et, where at ¼ at#1

þ tt
Ricker SSTa loge(Rt /St) ¼ a # bSt þ cSSTtþk þ et
Mixed effectsa,c loge(Rit /Sit) ¼ a þ ai # biSit þ cSSTi,tþk þ giSSTi,tþk þ eit, where eit ¼ /eit#1

þ tt
a Haeseker et al. (2005).
b Peterman et al. (2000).
c Mueter et al. (2002a).
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Rd,t was generated using the R(t# 4) model, no back-
transformation was necessary because the forecast was
already on the arithmetic scale.
Preseason salmon forecasts have also been generated

by averaging forecasts of several individual models
(Fried and Yuen 1987). Forecast averaging has been
shown to increase the precision of forecasts through
cancellation of random errors (Clemen 1989), but there
are no accepted rules for selecting the appropriate sets
of models to include in the forecast averaging
procedure. Bates and Granger (1969) found that
averaging was most effective when errors in the
component models were uncorrelated. Little cancella-
tion of random observation errors will occur if the
component data series are highly positively correlated
because errors are similar in direction and magnitude.
Using the same logic, Ridley (1999) suggested that
negatively correlated time series would work best for
forecast averaging to increase precision of forecasts.
Based on these observations, we generated a time
series of forecasting errors for each of the 10 individual
forecasting models above, estimated the pairwise
correlations among these series, and then selected the
two models with the lowest correlation for use in a
forecast averaging model.
Retrospective analysis.—We utilized retrospective

analysis to evaluate the performance of the 11
forecasting models for sockeye and chum salmon.
Only data that would have been available to make a
forecast for some past year were used for estimating
model parameters and generating the forecast. Our
retrospective analysis produced a time series of
forecasting errors for each model by (1) iteratively
stepping forward through time as each step added a
new year to the estimation data set, (2) generating a
forecast, and (3) comparing the forecast with the
observed value. This method produces ‘‘out-of-sam-
ple’’ forecasts that provide a rigorous assessment of
each forecasting model’s performance, just as if it had
been used historically (Shao 1993, Haeseker et al.
2005).
We initialized each of the 11 forecasting models

with data from the first 10 brood years for each stock.
After accounting for the data needed for model
initialization, the period available for forecasting
individual chum salmon stocks ranged from 5 to 25
years (average ¼ 17 years); the period available for
forecasting individual sockeye salmon stocks ranged
from 8 to 37 years (average ¼ 29 years). Altogether,
each model was evaluated across 665 stock-years for
chum salmon and 1,081 stock-years for sockeye
salmon.
Performance measures.—We used four performance

measures to characterize the central tendency and

variability in the distribution of annual forecasting
errors: mean raw error (MRE), mean absolute error
(MAE), mean percent error (MPE), and RMSE. Each
of these performance measures has been used in the
past to evaluate forecasting models for Pacific salmon
by characterizing the differences between the forecast-
ed (R̂

yr
) and observed (R

yr
) returns in year yr. The raw

error (e
i
) was calculated as

ei ¼ R̂yr # Ryr: ð7Þ

Positive values for the raw errors represent forecasts
that are too high, whereas negative values represent
forecasts that are too low. To obtain the MRE, the raw
errors were averaged over the number of years (n) that
were forecasted within each stock. This MRE thus
reflects the overall bias of forecasts. However, large
overestimates in some years can be offset to some
extent by large underestimates in others, which would
tend to produce an MRE close to 0. Thus, to reflect the
magnitude of forecasting errors encountered each year
regardless of sign, we calculated the MAE using the
mean absolute value of raw errors (i.e., R jeij/n). We
also calculated the traditional RMSE, which provides a
measure of forecast error variance and can be used to
construct confidence intervals for the forecasts, as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðeiÞ2

n

vuuut
: ð8Þ

The model that produces the lowest RMSE would
also produce the narrowest confidence intervals. We
did not calculate MRE, MAE, and RMSE over all
stocks and years because results would have been
dominated by stocks with the highest abundance.
Therefore, we first calculated the percent error for
each annual forecast of returns (1 stock-year), that is,

Percent error ¼
R̂yr # Ryr

Ryr

! "
& 100: ð9Þ

The MPE was then calculated by averaging the
percent errors from equation (9) over the number of
years that were forecast within each stock. To evaluate
model performance across all stocks and years, we also
calculated the overall average MPE for each model and
species. However, it should be noted that for the
overall MPE, more weight is given to stocks that have
longer time series by putting equal weight on each
stock-year.
For each stock and performance measure, we ranked

the forecasting models from 1 (best) to 11 (worst)
based on the absolute value of the results for MRE,
MAE, MPE, and RMSE. We also calculated several

18 HAESEKER ET AL.



other similar performance measures, including mean

absolute percent error and median versions of the

above measures to reflect central tendency, but the

rankings for each of these alternative performance

measures were well correlated (r . 0.60) with at least

one of our four main measures. We therefore report

results using only the above four indicators.

We purposely avoided use of only a single

performance measure for ranking forecasting models

because opinions vary among salmon forecasters,

managers, and users about which measure is most

useful and informative. For instance, MRE and MPE

reflect long-term bias in forecasts (i.e., how much a

model tends to over- or underestimate recruitment),

whereas MAE measures the average magnitude of

annual forecasting errors regardless of sign (Chatfield

2000). Forecasters and managers might be more

interested in minimizing MRE and MPE, whereas

someone in the commercial fishing industry might put

more weight on minimizing MAE. The RMSE reflects

both bias and precision (Rice 1995), yet it is not

universally used among forecasters, let alone other

groups. In appendix Tables A.1.1 and A.2.1 (available

in the online version of this article at afs.allenpress.

com), we report the rank of each forecasting model for

each performance measure and population. Readers can

then interpret these results based on their preferred

performance measures.

For each stock, we also calculated the coefficient of

determination (r2) of the forecasted versus observed

returns for the highest-ranking model, where rank was

based on the RMSE. The r2 represents the proportion

of variability in recruitment explained by the best

forecasting model. By reporting these values for the

highest-ranked models, we provide an upper bound for

the proportion of variance that can be explained in

retrospective analyses among our suite of forecasting

models.

Results

For sockeye salmon, we found mainly positive
correlations in raw errors among the 10 individual
models across stocks and years (Table 4). Correlations
were higher among stock–recruitment-type models
(average r ¼ 0.62) and among naı̈ve-type models
(average r¼ 0.52) but lower between different types of
models (average r ¼ 0.21). The most negative
correlation was between the 4-year average model
and the KF model (r ¼#0.01), so these models were
selected for the composite forecast averaging model for
sockeye salmon.
For chum salmon, we also found positive correla-

tions in raw errors among the 10 individual models
across all stocks and years (Table 5), but the
correlations were generally higher than those for
sockeye salmon. Correlations were especially high
among stock–recruitment models (all r ( 0.71; average
r ¼ 0.85) but were also high among the naı̈ve models
(average r ¼ 0.62) and between the naı̈ve and stock–
recruitment models (average r¼ 0.59). All correlations
were positive, but the smallest positive correlation was
between the R(yr # 1) and Ricker pink salmon index
models (r ¼ 0.29), so these were selected for the
forecast averaging model for chum salmon. For the
Willapa Bay and Grays Harbor chum salmon stocks
that lacked nearby pink salmon survival data, we used
only the R(yr # 1) forecasts as the forecast averaging
model for these two stocks.
The overall MPE, the scale-independent perfor-

mance measure averaged across all stocks within a
species, indicated that for sockeye salmon, the naı̈ve
R(yr# 4) model performed best (had the lowest overall
MPE [42%]) followed by the hybrid sibling model
(66%; Figure 1). The 4-year-average model performed
worst (MPE¼ 356%). The KF model performed better
(overall MPE¼ 86%) than the other stock–recruitment-
type models. The 4-year average plus KF forecast
averaging model had an overall MPE of 221%, which

TABLE 4.—Correlations among the annual raw errors for 11 adult abundance forecasting models (described in text) for 37
sockeye salmon stocks (R¼ forecast based on the return 1 or 4 years earlier; SST¼ sea surface temperature; AR[1]¼ first-order
autoregressive; KF¼ Kalman filter; and ME ¼ mixed effect).

Model R(yr # 1) R(yr # 4)
4-year
average Ricker

Ricker
SST

Ricker
AR(1) KF ME

Hybrid
sibling

Pink salmon
index

R(yr # 4) 0.20
4-year average 0.68 0.68
Ricker 0.10 0.27 0.19
Ricker SST 0.24 0.47 0.37 0.67
Ricker AR(1) 0.14 0.33 0.22 0.95 0.79
KF 0.08 #0.01 #0.01 0.23 0.42 0.36
ME 0.17 0.44 0.26 0.50 0.88 0.69 0.45
Hybrid sibling 0.30 0.66 0.56 0.22 0.47 0.30 0.18 0.48
Pink salmon index 0.07 0.25 0.15 0.99 0.67 0.96 0.25 0.53 0.21
4-year average þ KF 0.42 0.35 0.51 0.29 0.55 0.43 0.85 0.52 0.44 0.29
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was between the overall MPEs of the component

models.

In contrast, for chum salmon, the hybrid sibling

model performed best (overall MPE¼ 16%), followed

by the naı̈ve models (42% for the R[yr # 4] model,

43% for the R[yr# 1] model, and 47% for the 4-year-

average model; Figure 1). As with sockeye salmon, the

KF had the lowest overall MPE (59%) among stock–

recruitment-type models, followed by the Ricker pink

salmon index model (60%). The Ricker SST model had

the highest overall MPE (81%). Similar to the sockeye

salmon results, the overall MPE (51%) for the forecast

averaging model that included the R(yr# 1) and Ricker

pink salmon index models was intermediate between

the overall MPEs of the component models. On

average, across all stocks and models, overall MPEs

for chum salmon were approximately half those for

sockeye salmon (Figure 1).

For each performance measure, we calculated the

proportion of stocks for which each model ranked first

(Figures 2–5). Based on three of the four performance

measures, the hybrid sibling model demonstrated the best

performance for sockeye salmon stocks, but naı̈vemodels

were also frequently ranked first. For chum salmon, the

rankings were similar; the hybrid sibling model ranked

first for a high proportion of stocks, and two naı̈vemodels

also frequently ranked first (Figures 2–5).

Thus, no single forecasting model was best across all

37 sockeye salmon stocks or across all 40 chum salmon

stocks; the best model depended on the particular stock

and the performance measure used. Most of the 11

forecasting models ranked first for at least one stock of

a given species in each of the four performance

measures.

Within individual stocks, the rankings of the 11

models often depended on which performance measure

FIGURE 1.—Overall mean percent error in forecasts of the abundance of adult recruits of chum and sockeye salmon averaged
across stocks and forecast years for the 11 forecasting models described in the text. Abbreviations are as follows: R¼ the return
observed 1 or 4 years earlier, SST¼ sea surface temperature, AR[1]¼ first-order autoregressive, ME¼mixed effects, and KF¼
Kalman filter.

TABLE 5.—Correlations among the annual raw errors for 11 adult abundance forecasting models for 40 chum salmon stocks.
See Table 4 for additional details.

R(yr # 1) R(yr # 4)
4-year
average Ricker

Ricker
SST

Ricker
AR(1) KF ME

Hybrid
sibling

Pink salmon
index

R(yr # 4) 0.37
4-year average 0.73 0.77
Ricker 0.39 0.73 0.72
Ricker SST 0.38 0.71 0.73 0.96
Ricker AR(1) 0.38 0.74 0.72 0.98 0.95
KF 0.41 0.66 0.70 0.81 0.81 0.86
ME 0.44 0.69 0.74 0.86 0.85 0.87 0.77
Hybrid sibling 0.65 0.56 0.74 0.54 0.51 0.51 0.49 0.52
Pink salmon index 0.29 0.63 0.60 0.85 0.85 0.85 0.71 0.71 0.44
R(yr # 1) þ Pink salmon index 0.76 0.63 0.82 0.80 0.79 0.79 0.72 0.73 0.67 0.84
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was used. Here, we provide three examples. For the

Kadashan (Alaska) chum salmon stock, the ME model

was ranked first based on the MPE performance

measure but ranked seventh based on RMSE and sixth

based on MAE (Table A.1.1). For the Weaver (BC)

sockeye salmon stock, the hybrid sibling model ranked

first based on RMSE but 11th based on MRE (Table

A.2.1). The 4-year average model for chum salmon

ranked first in 13 stocks based on RMSE, 11 stocks

based on MAE, 3 stocks based on MPE, and 2 stocks

based on MRE (Table A.1.1).

Although the best models varied to some extent

among stocks and performance measures, some models

were consistently better for some stocks. For instance,

the R(yr # 1) model ranked first across all four

performance measures for the Long Lake (BC) and

Ugashik (Alaska) sockeye salmon stocks (Table

A.2.1). The hybrid sibling model ranked first across

all four performance measures for the Willapa Bay

(Washington) and Andreafsky (Alaska) chum salmon

stocks (Table A.1.1). The hybrid sibling model for

sockeye salmon was best across three out of four

performance measures for five stocks (Birkenhead and

Weaver, BC; Cook Inlet, Naknek, and Nuyakuk,

FIGURE 2.—Proportion of chum and sockeye salmon stocks for which each of the 11 forecasting models described in the text
ranked first based on its root mean square error. See Figure 1 for abbreviations.

FIGURE 3.—Proportion of chum and sockeye salmon stocks for which each of the 11 forecasting models described in the text
ranked first based on its mean raw error. See Figure 1 for abbreviations.
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Alaska (Table A.2.1)). The R(yr # 1) model for chum
salmon was best across all four performance measures
for the Kwiniuk–Tubutulik (Alaska) stock and was best
in three out of four performance measures for the Area
10 (BC) and Kamishak (Alaska) stocks (Table A.1.1).
In general, the four different performance measures

reflected somewhat different characteristics of fore-
casting errors, as indicated by the ranking of models.
Ranks based on MRE were only moderately correlated
with the rankings based on the other three performance
measures (0.11 ) r ) 0.17 for sockeye salmon; 0.31
) r ) 0.38 for chum salmon). The same was true for
MPE (0.11 ) r ) 0.59 for sockeye salmon; 0.38 ) r

) 0.55 for chum salmon), but rankings based on
MAE and RMSE were quite similar (r¼ 0.88 for both

species). To remove the potential effect of large

outliers in forecasts, we also calculated median, rather

than mean, performance measures and found that the

model rankings and conclusions changed very little. To

examine which models were best at avoiding large

errors, we also developed a performance measure that

averaged the five largest absolute errors for each stock.

Ranks based on this performance measure were highly

correlated with ranks based on RMSE (r ¼ 0.92 for

sockeye salmon; r¼ 0.85 for chum salmon). Therefore,

FIGURE 4.—Proportion of chum and sockeye salmon stocks for which each of the 11 forecasting models described in the text
ranked first based on its mean absolute error. See Figure 1 for abbreviations.

FIGURE 5.—Proportion of chum and sockeye salmon stocks for which each of the 11 forecasting models described in the text
ranked first based on its mean percent error. See Figure 1 for abbreviations.
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the ranks based on RMSE are sufficient to indicate

which models avoided unusually large errors.

As with the 10 individual models, the relative

performance of the forecast averaging models depend-

ed on the stock and performance measure used for

ranking (Figures 2–5). The forecast averaging model

for sockeye salmon (4-year averageþKF) had a higher

rank and a smaller forecasting error than both of its

component models in 57 out of 148 cases (39%) across

the four performance measures and 37 stocks. The

forecast averaging model for chum salmon (R[yr# 1]þ
Ricker pink salmon index) had a higher ranking and a

smaller forecasting error than both of its component

models in 46 out of 160 cases (29%) across the four

performance measures and 40 stocks. Using just

RMSE, the forecast averaging model was better than

both of its component models in 22 of 37 sockeye

salmon stocks (59%) and 22 of 40 chum salmon stocks

(55%). These results suggest that some cancellation of

errors and commensurate increase in accuracy can be

achieved through averaging models with low or

negative correlation in their raw errors.

Another measure of a forecasting model’s usefulness

is its average rank across all stocks within each species

for a given performance measure (Figure 6). This

average ranking is appropriate because Figures 2–5

indicate only the frequency with which a model ranked

first, but some models ranked first for some stocks yet

poorly for others (hence, mediocre on average),

whereas other models consistently ranked near the

top across stocks. We wished to reflect the latter. For

example, the forecast averaging model for sockeye

salmon performed consistently well based on RMSE,

ranking second overall (Figure 6A) and at least third in

FIGURE 6.—Average ranks of the 11 forecasting models described in the text across (A) 37 sockeye salmon stocks and (B) 40
chum salmon stocks based on the results of four performance measures (root mean square error [RMSE], mean raw error [MRE],
mean absolute error [MAE], and mean percent error [MPE]). An average rank of 1 is the best. See Figure 1 for abbreviations.
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14 of 37 stocks, even though it ranked first in only a
few stocks (Figures 2, 6). This high ranking was also
true for the forecast averaging model for chum salmon
(Figure 6B). Average ranks were generally best for the
4-year average, hybrid sibling, and forecast averaging
models for both sockeye and chum salmon (Figure 6).
To characterize the relative performance of the new

or recently developed stock–recruitment-type models
(Ricker SST, Ricker pink salmon index, KF, and ME
models), we tallied the number of times each of these
models ranked first among all the stock–recruitment-
type models using RMSE as the performance criterion
(Figure 7). We found that these newer stock–
recruitment models outperformed the standard Ricker
model in 86% of the sockeye salmon stocks and 90%
of the chum salmon stocks (Figure 7). Stock–

recruitment models that included SST (Ricker SST
and ME models) outperformed the other stock–
recruitment models in 59% of the sockeye salmon
stocks and 28% of chum salmon stocks. The KF and
ME models performed best in about 50% of stocks for
both sockeye and chum salmon. The Ricker pink
salmon index model performed best in only 15% of
chum salmon stocks and only 8% of sockeye salmon
stocks.

In general, despite the wide range of forecasting
model types examined, even the highest-ranked model
(based on RMSE for each population) explained on
average only a small proportion of the variability in
recruitment (Figures 8, 9). For sockeye salmon, r2

values for individual stocks ranged from 0.01 to 0.78
and averaged 0.36 (Figure 8). The best model typically
explained a higher proportion of the variation in
recruitment for individual stocks in Washington and
BC (average r2 ¼ 0.44) than in Alaska (average r2 ¼
0.27). For chum salmon, r2 values for individual stocks
ranged from 0.001 to 0.70 (average r2 ¼ 0.21; Figure
9), but no regional differences were apparent in the
variation explained by the highest-ranked model based
on RMSE.

One factor influencing the poor performance of
preseason forecasting models for sockeye and chum
salmon may be uncertainty in age-at-maturity data.
More variation was explained in chum salmon stocks
with age composition data (average r2 ¼ 0.30) than in
chum salmon stocks without age composition data
(average r2 ¼ 0.11; Figure 9). However, some of that

FIGURE 7.—Proportion of chum and sockeye salmon stocks
for which each of the stock–recruitment-type models de-
scribed in the text ranked highest among models of that type
based on its root mean square error. See Figure 1 for
abbreviations.

FIGURE 8.—Proportions (r2) of the temporal variation in
recruitment in 37 stocks of sockeye salmon explained by the
highest-ranked forecasting model based on root mean square
error. The solid horizontal line denotes the average r2 value
across all stocks. Stock numbers (x-axis) are arranged
geographically from Washington State in the south (stock 1)
to Bristol Bay in southwestern Alaska (stocks 29–37); see
Table 1 for stock descriptions.

FIGURE 9.—Proportions (r2) of the temporal variation in

recruitment in 40 stocks of chum salmon explained by the

highest-ranked forecasting model based on root mean square

error. The diamonds pertain to stocks with age composition

data, the squares to stocks with few or no age composition
data. The solid horizontal line denotes the average r2 value

across all stocks. Stock numbers (x-axis) are arranged

geographically from Washington State in the south (stocks

1–9) to Norton Sound in western Alaska (stocks 35–40); see

Table 2 for stock descriptions.
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difference may be attributed to use of the hybrid sibling
model, which required age composition data and
generally performed well. The hybrid sibling model
ranked first in four of the eight chum salmon stocks for
which r2 equaled or exceeded 0.48 for the highest-
ranking model. To remove the potential effect of
alternative model types (e.g., naı̈ve, hybrid sibling,
forecast averaging) on the results, we compared
average r2 for the best-performing stock–recruitment-
type model (i.e., the stock–model combinations used in
Figure 7) between the 21 chum salmon stocks with age
composition data and the 19 stocks with little or no age
composition data. The average r2 was 0.20 for chum
salmon stocks with age composition data and 0.07 for
those without age composition data.

Discussion

In our previous work (Haeseker et al. 2005) and in
our present analyses, no single model emerged as
consistently better at forecasting across stocks within a
species for pink, chum, or sockeye salmon. This
general result is consistent with past comparisons of
preseason forecasting models for Pacific salmon (Fried
and Yuen 1987; Noakes et al. 1990; Wood et al. 1997;
Adkison 2002; Zhou 2003; Cass et al. 2006). The best
model varied depending on the particular salmon stock
and performance measure. Nevertheless, three general
conclusions emerge from our analyses. First, regardless
of performance measure, the best three models tended
to include one of the naı̈ve time series models, the
forecast averaging model, and the hybrid sibling model
(the last obviously only for chum and sockeye salmon).
Second, even when the best of the 8 models (for pink
salmon) and 11 models (for chum and sockeye salmon)
was used for each separate stock, forecasting errors still
tended to be large. The average proportion of variation
in recruitment accounted for across all stocks within a
species was only 0.36 for sockeye salmon, 0.21 for
chum salmon, and 0.20 for pink salmon, which
suggests that managers and harvesters should limit
confidence in preseason forecasts for the foreseeable
future. Third, despite their widespread usage in
forecasting (often because of a lack of alternatives),
stock–recruitment-type models (Ricker, Ricker AR[1],
Ricker SST, KF, ME, and Ricker pink salmon index)
tended to have the worst performance based on overall
MPE and average ranking across performance mea-
sures. Those models also were ranked first for the
smallest proportion of stocks (all ,11%) based on any
of the four performance measures.
One background issue is important to address before

we discuss our results further. Unlike most previous
evaluations of preseason forecasting models for Pacific
salmon (which focused on particular regions and

models), the present work and our previous paper
(Haeseker et al. 2005) comprehensively compared
diverse models across a single, large database of 120
populations covering the three species throughout most
of western North America. Altogether, we evaluated
the performance of forecasting models across 1,081
stock-years for sockeye salmon, 665 stock-years for
chum salmon, and 783 stock-years for pink salmon. As
we synthesize results for sockeye and chum salmon
below, we will compare them with our previous results
for pink salmon to produce more general conclusions.
Some of these across-species differences in fore-

casting ability may be due to differences in life history.
The amount of recruitment variation explained by the
best models for chum and pink salmon (0.21 and 0.20,
respectively), which enter the ocean as age-0 juveniles,
was lower than that of the best model for sockeye
salmon (0.36), which enter the ocean as age-1 or age-2
juveniles. However, these differences may be due to
differences in other factors, such as spawning condi-
tions, rearing habitat conditions, morphology, physiol-
ogy, and quality of stock–recruitment data; intrinsic
natural variability in demographic rates could also
explain the differences. Comparisons in forecasting
ability between these and other salmon species (e.g.,
coho salmon O. kisutch and Chinook salmon O.
tshawytscha, which have ocean-, stream-, or lake-type
life histories) could improve understanding of the
influence of life history variation on recruitment
uncertainty.
The long stock–recruitment time series used as data

inputs in this analysis provided an opportunity to
conduct a robust evaluation of forecasting model
performance across 1,746 stock-years for chum and
sockeye salmon. However, the methods for estimating
abundance within these time series may have changed
over time. For example, the bias or precision in
abundance estimates over time may have been affected
by changing from weir counts to aerial surveys,
modifying the expansion factors used to convert
abundance indices to abundance estimates, or changing
the methods used to estimate stock composition within
mixed-stock fisheries. However, the extent to which
temporal changes in data quality may have affected
forecasting model performance is unknown.
Naı̈ve time series models performed surprisingly

well for all three species despite the fact that these
models did not explicitly account for biological or
environmental processes (e.g., spawner abundance or
ocean conditions). The R(yr # 4) naı̈ve model for
sockeye salmon demonstrated an overall MPE of 42%,
which was 36% smaller than that of the next-best
model (hybrid sibling model). All three naı̈ve models
for chum salmon demonstrated a relatively low overall
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MPE (42–47%); however, the overall MPE for the
hybrid sibling model was even lower (16%). For pink
salmon, the R(yr # 2) and 2-year-average models had
the lowest MPEs (82% and 103%, respectively;
Haeseker et al. 2005). This general advantage of naı̈ve
models over more realistic, complex models may result
from (1) the greater number of parameters requiring
estimation in complex models (which creates more
chances for errors in those estimates to degrade
forecasts), (2) the larger number of explanatory
variables used in the complex models (which similarly
creates more chances for errors to corrupt forecasts;
e.g., age-at-return data), (3) our lack of understanding
of critical processes governing survival of salmon to
recruitment (which leads to mis-specification of
complex forecasting models), or (4) a combination of
these.
The hybrid sibling model (Haeseker et al. 2007) was

routinely in the top 3 of the 11 models for sockeye and
chum salmon. This was true in terms of three
performance measures: (1) overall MPE (ranked
second for sockeye salmon, with an MPE ¼ 66%,
and first for chum salmon, with an MPE ¼ 16%), (2)
the proportion of stocks in which the model was the
best one (ranked first or second for both sockeye and
chum salmon depending on the performance measure),
and (3) the average rank across stocks and performance
measures (generally ranked first for sockeye salmon
and first or third for chum salmon). The good
performance of the hybrid sibling model is a notable
departure from previous research on chum and sockeye
salmon forecasting models because this new model
performs better than the commonly used standard
sibling model (Haeseker et al. 2007) as well as most
other models (present results). One reason for the
model’s superior performance is that, unlike spawner–
recruit models, which attempt to estimate the effects of
all sources of survival rate variability between
spawning and recruitment, the major sources of
interannual variability may have already affected
recruit abundance by the time the abundances of the
earliest returns of sibling groups are estimated
(Bradford 1992). Another reason for the model’s
success may be its structure; it uses either a naı̈ve
model or a standard sibling model, depending on the
variance of residuals around the standard sibling model
(details in Haeseker et al. 2007). A large residual
variance triggers use of a naı̈ve model, which we have
demonstrated has surprisingly strong performance. For
age-classes with strong sibling relationships, the hybrid
sibling model capitalizes on the relationship’s strength
in forecasting the next age-class.
Several lines of evidence support the Wood et al.

(1997) suggestion that a lack of data on, or large

uncertainty in, age-at-return may contribute to poor
performance of preseason forecasting models for chum
and sockeye salmon. First, limited or absent age-at-
return data preclude the use of sibling models, which
demonstrated relatively good performance when ap-
plied here. Thus, less-effective models would have to
be used. Second, among the chum salmon stocks, the
age-based hybrid sibling model had the lowest overall
MPE (16%), while the next-best case, the non-age-
based R(yr # 4) model, had an MPE of 42%. Thus,
smaller errors were produced by a forecasting model
that took age structure into account. Third, for chum
salmon, the amount of variation explained by the best
stock–recruit model was roughly three times as great
when age composition data were available as when
such data were lacking. For these reasons, our analysis
highlights the importance of collecting precise and
accurate age composition data. Such data will reduce
the problem of uncertainty in age-at-maturity data that
tends to obscure patterns in brood year survival and to
complicate identification and estimation of covariates
for characterizing these patterns in survival. However,
even complete certainty in age composition may not
result in better forecasting performance. For pink
salmon, stock–recruitment models generally under-
performed relative to naı̈ve models (Haeseker et al.
2005) even though there was certainty in age
composition (i.e., fixed age at maturity of 2 years).
Across the three salmon species and stocks, the

forecast averaging models averaged either second or
third best based on RMSE, MAE, and MRE criteria
(Figure 6; see also Figure 6 in Haeseker et al. 2005).
While forecast averaging models demonstrated high
rankings on average, they were rarely ranked first
among sockeye or pink salmon stocks (Figures 2–5;
see also Figures 2–5 in Haeseker et al. 2005). In
contrast, the forecast averaging model for chum salmon
was frequently ranked first according to the RMSE and
MAE criteria.
Fried and Yuen (1987) and Noakes et al. (1990) also

found that forecast averaging may improve preseason
forecasts for sockeye salmon, although they evaluated
a much smaller range of models and stocks. Neverthe-
less, salmon forecasters should choose component
models carefully when deciding which to include in a
forecast averaging model. Bates and Granger (1969)
and Ridley (1999) provide good evidence that models
with the weakest or most negatively correlated time
series of forecasting errors work best in forecast
averaging models to increase the precision of forecasts.
We therefore suggest that forecast averaging models
should not be composed solely of stock–recruitment-
type models because forecasting errors of such models
are strongly positively correlated for all three species
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(Tables 4, 5; Table 2 of Haeseker et al. 2005). These
high correlations indicate that stock–recruitment-type
models are accounting for and missing the same time-
varying events and that their forecasting errors will
therefore not tend to cancel one another out. Instead,
we suggest using correlation matrices to determine
which models have low correlation among their
forecast errors and which would therefore be good
candidates for components of a forecast averaging
model.
Although the various stock–recruitment models did

not generally fare well, there were numerous individual
stocks for which those models gave the best forecasts.
For instance, the Ricker pink salmon index model
generally performed better for chum salmon than for
sockeye salmon. This result is not surprising because
chum and pink salmon enter the ocean at similar times,
body sizes, and ages (age-0 fry). Sockeye salmon enter
the ocean as larger age-1 or age-2 smolts, and the
factors that affect age-0 pink salmon may not reflect
the factors that affect the larger age-1 and age-2
sockeye salmon.
The KF version of the Ricker model performed

better than the standard Ricker model, according to the
RMSE criterion, for 41% of sockeye salmon stocks and
53% of chum salmon stocks. This is consistent with
expectations based on the work of Peterman et al.
(2000), who demonstrated through simulations that the
KF model is relatively effective at tracking changing
productivity regimes. The enhanced performance of the
KF model may reflect substantial changes in underly-
ing productivity over time in sockeye and chum salmon
stocks (as opposed to year-to-year variation). We saw
evidence of underlying trends in the Ricker a parameter
for both sockeye and chum salmon (not shown here).
The multistock ME model also performed better than

other stock–recruitment models. According to the
RMSE criterion, the ME model outperformed the
Ricker SST model in 57% of sockeye salmon stocks,
65% of chum salmon stocks, and 53% of pink salmon
stocks. Both models incorporate SST, but during
parameter estimation the ME model simultaneously
uses information from all stocks of a given species.
These results are consistent with those of Mueter et al.
(2002a) and Su et al. (2004), indicating that the
multistock approach can provide more precise and
accurate estimates of model parameters, translating into
better forecasting accuracy, as demonstrated here and
in our previous analysis (Haeseker et al. 2005).
In conclusion, our comprehensive evaluations of a

wide range of preseason forecasting models across 120
populations of pink, chum, and sockeye salmon show
that no single model is universally appropriate for a
given species. However, the hybrid sibling model for

chum salmon provides by far the lowest average
percent forecasting error (16%) of any model for any of
these three species. Another category of consistently
highly ranked models is the naı̈ve models, which
forecast recruitment based on recruitment 1, 2, or 4
years before or 2- or 4-year moving averages.
Nonetheless, the proportion of annual variation in
recruitment that is accounted for by the best stock-
specific forecasting models is generally quite small
(,36%). This figure might increase for particular
populations through future research, but a large
improvement in forecasting ability seems unlikely
given the breadth of stocks and models examined to
date. Even applying a correction for prediction bias
(Chen 2004) only improves forecasts by a few
percentage points, and we have demonstrated that
more complex models are not necessarily superior.
Therefore, better in-season updates and adjustments to
fishing regulations and a cautious approach to the
opening and closing of fisheries will remain high
priorities.
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