Description of a Daily Simulation Model For the Area 4 (Skeena) Commercial Gillnet Fishery

S. Cox-Rogers

Departmerit of Fisheries and Oceans
Operations Branch
1.17 2nd Avenue West

Prince Rupert, B.C.
V8J 1G8

September 1994

Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 2256

Canadian Manuscript Report of Fisheries and Aquatic Sciences

Manuscript reports contain scientific and technical information that contributes to existing knowledge but which deals with national or regional problems. Distribution is restricted to institutions or individuals located in particular regions of Canada. However, no restriction is placed on subject matter, and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences.

Manuscript reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in Aquatic Sciences and Fisheries Abstracts and indexed in the Department's annual index to scientific and technical publications.

Numbers 1-900 in this series were issued as Manuscript Reports (Biological Series) of the Biological Board of Canada, and subsequent to 1937 when the name of the Board was changed by Act of Parliament, as Manuscript Reports (Biological Series) of the Fisheries Research Board of Canada. Numbers 901-1425 were issued as Manuscript Reports of the Fisheries Research Board of Canada. Numbers 1426-1550 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Manuscript Reports. The current series name was changed with report number 1551.

Manuscript reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Out-of-stock reports will be supplied for a fee by commercial agents.

Rapport manuscrit canadien des sciences halieutiques et aquatiques

Les rapports manuscrits contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais quitraitent de problèmes nationaux ou régionaux. La distribution en est limitée aux organismes et aux personnes de régions particuliéres du Canada. It n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques du ministère des Pêches et des Océans, c'est-à-dire les sciences halieutiques et aquatiques.

Les rapports manuscrits peuvent être cités comme des publications complètes. Le titre exact parait au-dessus du résumé de chaque rapport. Les rapports manuscrits sont résumés dans la revue Résumés des sciences aquariques et halieutiques, et ils sont classés dans l'index annuel des publications scientifiques et techniques du Ministère.

Les numéros 1 à 900 de cette série ont été publiés à titre de manuscrits (série biologique) de l'Office de biologie du Canada, et après le changement de la désignation de eet organisme par décret du Parlement, en 1937, ont été classés comme manuscrits (série biologique) de l'Office des recherches sur les pêcheries du Canada. Les numéros 901 à 1425 ont été publiés à titre de rapports manuscrits de l'Oflice des recherches sur les pêcheries dú Canada. Les numéros 1426 ả 1550 sont parus à titre de rapports manuscrits du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 1551.

Les rapports manuscrits sont produits à réchelon régional. mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre. Les rapports épuisés seront fournis contre rétribution par des agents commerciaux.

Canadian Manuscript Report of Fisheries

 and Aquatic Sciences No. 2256September 1994

Description of a daily simulation model for the Area 4 (Skeena River) commercial gillnet fishery
> by

> Steve Cox-Rogers
> *

> Operations Branch
> Department of Fisheries and Oceans

Prince Rupert B.C.
V8J-1G8
(C) Minister of Supply and Services Canada 1994

Cat. No. Fs 97-4/2219E ISSN 0706-6473
Correct citation for this publication:
Cox-Rogers, S. 1994. Description of a daily simulation model for the Area 4 (Skeena River) commercial gillnet fishery. Can. Manuscr. Rep. Fish. Aquat. Sci. 2256: iv +46 p.

Abstract

Cox-Rogers, S. 1994. Description of a daily simulation model for the Area 4 (Skeena River) commercial gillnet fishery. Can. Manuscr. Rep. Fish. Aquat. Sci. 2256: iv +46 p.

This report describes a daily simulation model for the Area 4 (Skeena River) commercial gillnet fishery. The model evaluates the effects of various gillnet fishing patterns on the catch and escapement of sockeye, steelhead (including sub-stocks), early-run coho, chinook, and pink salmon migrating through four sub-areas of Area 4 . For any fishing pattern, the model predicts the daily sockeye harvest rate associated with the fishing effort, and applies this rate to the abundance of salmon to calculate catch. The model uses sockeye harvest rate and effort relationships obtained from run-reconstructions of Area 4 fishery data for the years 1985-1991. The daily abundance of each species entering Area 4 depends upon the run sizes and run-timings used in the model. A return of 2.3 million fish to Area 4 is used as the expected sockeye run size. Run sizes for other species can be specified, or represented as proportions, for harvest rate calculations. The daily proportions of sockeye entering the fishery are derived from average reconstructed runtiming curves for the base-period years 1985-1991. The run-timings for other species are summarized from a combination of test fishery and tagging data, and are represented in the model as normal distributions. The model is spread-sheet based, and evaluates any combination of fish abundance and gillnet fishing pattern, including the use of gillnet weedlines and catch and release for steelhead. Changes in harvest rate are measured about the pattern for the 1985-1991 period.

RÉSUMÉ

Dans ce rapport, on décrit un modèle de simulation quotidienne de la pêche commerciale au filet maillant dans le secteur 4 (Skeena River). Le modèle en question permit d'évaluer les effets de divers modes de pèchẹ au filet maillant sur les captures et sur l'échappée; il s'utilise pour le saumon rouge, la truite arc-en-ciel anadrome (y compris les sous-stocks), le saumon coho a remonte hâtive, le saumon quinnat et le saumon rose en migration dans quatre sous-unités du secteur 4. Quel que soit le mode d'exploitation, le modèle permet de prévoir le taux de capture quotidien de saumon rouge correspondant a l'effort de pèche et, par l'application du taux obtenu aux effectifs, de calculer les prises. Le modèle fait intervenir des relations entre le taux de capture et l'effort de pèche, déterminées par reconstruction des remontes dans le secteur 4 a partir de données recueillies de 1985 a 1991. La valeur quotidienne des effectifs de chaque espèce pénétrant dans le secteur 4 dépende de la taille et de la chronologie de la remonte utilisées dans le modèle. Pour le saumon rouge, l'effectif escompte de remonte utilise dans le modèle est un retour de 2.3 millions de poissons dans le secteur 4 . Pour calculer le taux de capture des autres espèces,
on peut utiliser des valeurs d'effectif de remonte déterminées ou des proportions. Dans le cas du saumon rouge, la proportion quotidienne pénétrant dans la zone de pèche est déterminée d'après des courbes chronologiques des remontes moyennes reconstituées pour la période de base (19851991). Pour les autres espèces, la chronologie de la remonte est établie sous une forme condensée a partir d'un ensemble de données conjuguant les résultats de pêches exploratoires et d'études de marquage et représentée sous forme distributions normales dans le modèle. Le modèle est un tableau de ventilation et permet d'évaluer toutes les combinaisons possibles d'effectifs et de modes d'exploitation au filet maillant, y compris le filet maillant modifie de type "weedlines" ainsi que la capture avec remise a l'eau pour la truite arc-en-ciel anadrome. Les variations du taux de capture sont mesurées par rapport a la courbe de la période de base (1985-1991).

INTRODUCTION

The Skeena River, in northern British Columbia, supports an important commercial fishery for sockeye and pink salmon each July and August. The fishery takes place in statistical Area 4, adjacent to the river mouth. Although management of the Area 4 fishery has evolved considerably since the late 1800's (see Sprout and Kadowaki 1987), the incidental catch of non-target species in Area 4, such as steelhead, coho and chinook salmon, remains a concern. Overlaps in runtiming among the various salmon stocks prevent harvesting of single stocks in Area 4, while diverse stock productivities preclude the application of a single harvest rate that would provide the maximum sustained yield for all stocks (Sprout and Kadowaki 1987). Recent management of the fishery has been characterized by attempts to reduce harvest rates on incidental species. Fishing opportunities are now restricted in early August to protect early-run coho. As well, in 1991, DFO committed to reducing Area 4 steelhead harvest rates by 50% within three years. Unfortunately, reliable catch and escapement data for Skeena River coho and steelhead do not exist, and so direct evaluation of Area 4 harvest rates, for these species, is difficult.

In the absence of reliable catch and escapement data for Skeena River steelhead, Ward et al. (1993) developed a computer model of the Area 4 fishery to estimate steelhead harvest rates indirectly. Their approach used weekly harvest rates for sockeye, adjusted for differences in runtiming, as a surrogate for steelhead and other co-migrating species. Ward et al's. (1993) model was a useful first step in understanding the dynamics of the Area 4 fishery; however, the weekly time step in the model was found to be insufficient for pre-season planning purposes. Daily resolution of the Area 4 fishery, on a sub-area basis, is required to assess harvest rate changes attributable to specific management actions.

This report describes a daily simulation model for the Area 4 commercial gillnet fishery. The model was jointly developed by the Department of Fisheries and Oceans and the British Columbia Ministry of Environment, Lands, and Parks, as a tool for evaluating Area 4 management options. The model is spread-sheet based, and evaluates the effects of various gillnet fishing patterns on the catch and escapement of sockeye, steelhead (including sub-stocks), earlyrun coho, chinook, and pink salmon migrating through four sub-areas of Area 4. The model allows managers to explore alternate fishing regimes before fishing actually takes place, and provides an objective framework for pre-season planning. As an example of model use, various simulations of the Area 4 fishery are presented.

METHODS

General Description of the Area 4 Model

The structure of the Area 4 model is similar to the "gauntlet" fishery models described by Gilhousen (1992) and Starr and Hilborn (1988). Fish are assumed to pass through a series of sequential fisheries before escaping to spawn. The catch of fish in each sequential fishery is regulated by varying the number of boats present, and by varying the days when fishing occurs.

The Area 4 model uses the following inputs to simulate the fishery:
a) total incoming abundance of sockeye, coho, steelhead, chinook, and pink salmon.
b) run-timing curves for sockeye, coho, steelhead, chinook, and pink salmon.
c) daily fishing effort (\# of boats).
d) a schedule of expected changes in daily harvest rate attributable to gillnet "weedlines", and steelhead catch and release..

The model treats Area 4 as four sequential fisheries: Outside, Sound, Smith, and River/Gap/Slough (Figure 1). All fish are assumed to move through each sub-area prior to passing into the Skeena River. The runs entering the fishery are partitioned into daily migration blocks. Each migration block represents a proportion of the run-timing curve for each species. The migration blocks are moved sequentially through each sub-area using a daily time-step. Sockeye tagging studies show that sockeye take between two and five days to move through Area 4 (Takagi and Smith 1973), with four days being the best point estimate (Smith and Jordan 1973). Currently, the model is configured with a four day migration rate for all species, although the number of days each migration block spends in each sub-area can be modified if required.

The basic calculation in the model is the estimate of sub-area catch and escapement, where the catch depends upon the gillnet fishing pattern (ie. the dates fished and the effort present). For any fishing pattern, the model first predicts the daily sockeye harvest rate associated with the daily fishing effort in each sub-area, and then applies this rate to the daily proportion of fish present in each sub-area to calculate daily catch and escapement.

The relationships for predicting daily harvest rate from fishing effort were obtained from historical Area 4 sockeye run-reconstructions. The daily effort in each sub-area can be entered manually into the model, or predicted from regressions relating historical Area 4 effort to date. If specified, changes in harvest rate, attributable to using gillnet weedlines, and catch and release for steelhead, are incorporated into the daily harvest rate calculations.

The abundance of fish entering Area 4 depends upon the run sizes and run-timings used in the model. The run-timing curve for sockeye is derived from the historical run-reconstructions. The run-timing curves for other species are summarized from a combination of test fishery CPUE
and tagging data, and are represented in the model as normal distributions with specified peak dates and standard deviations.

A 25% exploitation rate is applied to the abundance of each species before the start of calculations. This rate represents estimates of Skeena River sockeye exploitation in S. E. Alaska, and Canadian Areas 1, 3 and 5.

The major assumptions of the model are:
a) fish pass through each sub-area as a uniform band.
b) migration is constant in speed and direction.
c) fishing gear is spread uniformly over the migration path within each sub-area
d) gear efficiency remains stable during the allowed fishing time while each unit removes fish that another unit could have caught (eg. gear competition occurs)
e) an exponential limit adequately describes the relationship between daily harvest rate and fishing effort in each sub-area:

1) $h=1-e^{-q E}$
where C is catch, N is abundance, h is the harvest rate $(\mathrm{C} / \mathrm{N}), \mathrm{q}$ is an estimate of the catchability coefficient, E is effort, and e is the base of natural logarithms (Hilborn and Walters 1992).
f) daily harvest rates calculated for sockeye apply to all co-migrating species.

Data Sources

The model was configured using data obtained from the Operations Branch of the Department of Fisheries and Oceans in Prince Rupert. The primary sources of data were Area 4 sockeye catch and effort records by sub-area from 1985-1991, and Tyee test fishery catch per effort (CPUE) records, by species, from 1985-1991. The schedule of weedline impacts used in the model was summarized from studies conducted by Lewensky (1992). The years 1985-1991 were selected as the "base-period" for the model because a) these years represent recent management of the Area 4 fishery, and b) the data were complete for run-reconstruction by subarea.

The Area 4 sockeye catch data used to configure the model represented fishery officer hail estimates collected inseason. To calibrate the inseason hails against actual sales slip catch records, the inseason hails were first converted to proportions of the seasonal total for each year, and then multiplied by the annual sales slip figure. Sockeye escapement past the Tyee test fishery was generated using Tyee test fishery CPUE expanded to daily escapement. Daily (i) sockeye escapement $\left(\mathrm{E}_{\mathrm{j}}\right)$ was estimated by dividing daily sockeye CPUE in the test fishery by annual estimates of test fishery catchability (q). Annual sockeye catchability in the test fishery was obtained from post-season calibrations using actual escapement estimates from the Babine River
counting fence (Cox-Rogers and Jantz 1993).
2) $E_{i}=C P U E_{i} / q$

The Area 4 effort data used to configure the model represented gillnet (95\%) and purse seine vessels (5%) counted during fishery officer surveys and overflights. Purse seine effort, where present in the data base, was converted to gillnet equivalents using a 1985-1991 sockeye conversion ratio of approximately 4:1 (eg. seine CPUE : gillnet CPUE).

Model Configuration

The model was configured in three steps: A) run-reconstruction of historical sockeye returns to Area $4, B$) defining species run-timing, and C) simulating the fishery.

A) Sockeye Run Reconstruction

The sockeye run-reconstructions used to configure the model followed the methodology of Starr and Hilborn (1988). The reconstructions established daily sockeye abundance and harvest rates in each sub-area of Area 4 for the 1985-1991 base-period, and established run-timing curves for sockeye entering the fishery. The basic relationships used in the reconstructions were:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ij}}+\mathrm{E}_{\mathrm{ij}} \tag{3}
\end{equation*}
$$

$$
\mathrm{h}_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ij}} / \mathrm{N}_{\mathrm{ij}}
$$

where N_{i} was daily abundance in sub-area j, C_{i} was daily catch, E_{i} was daily escapement, and h_{i} was the daily harvest rate.

The reconstructions also configured data relating Area 4 fishing effort to date. Linear regressions relating fishing effort and date were calculated for a) average 1985-1991 total Area 4 effort against date and b) average 1985-1991 sub-area proportions of Area 4 effort against date. Average weekly effort was evaluated at the mid-point of each Julian week to account for differences in fishery start dates attributable to calender variation among years.

B) Species Run-timing

The run-timing curves used to configure the model were derived from a variety of sources. For sockeye, the 50% cumulative proportion (catch + escapement) dates were calculated from the run-reconstructions, and aligned with the average 1985-1991 50\% cumulative proportion date. The daily proportions were then averaged across all years and smoothed to remove daily variability.

For early-run coho, chinook, and pink salmon, run-timing was estimated using 1985-1991
test fishery CPUE. The 50\% cumulative CPUE dates were calculated for each year, and aligned to the average 1985-1991 50\% cumulative CPUE dates. The daily CPUE's were then averaged across all years, and expressed as daily proportions. The daily proportions were smoothed to remove variability caused by low or zero CPUE values in some years. Normal distributions were applied to the smoothed daily proportions, using the mean 50% peak dates for each species and a common standard deviation, for all species, of 12.5 days. Finally, the normal distributions were moved back four days to approximate run-timing into the fishery.

Steelhead run-timing was estimated from a review of available information (Ward et al. 1993), and from a run-reconstruction of 1985-1991 test fishery CPUE "entering" the fishery by:
4) $N_{i j}=E_{i j} /\left(1-h_{i j}\right)$
where N_{i} was reconstructed daily CPUE in sub-area j, E_{i} was daily escapement (CPUE), and h_{i} was reconstructed daily sockeye harvest rate. The 50% cumulative proportion dates were calculated from the run-reconstructions, and aligned with the average 1985-1991 50\% cumulative proportion date. The daily proportions were then averaged across all years and smoothed to remove daily variability. A normal distribution was applied to the smoothed daily proportions, using the mean 50% peak date, and a standard deviation of 12.5 days. Normal distributions were also used to represent steelhead sub-stock timing in the model. The peak dates and standard deviations (11.0 days) for steelhead sub-stocks were obtained from Ward et al. (1993).

C) Fishery Simulation

The objective of the fishery simulations was to 1) establish the average 1985-1991 baseperiod fishing pattern and harvest rates for all species, and 2) modify the base-period fishing pattern to show the effects of alternate management options. The fishery simulations were configured using the following inputs:
a) incoming Area 4 abundance by species
b) incoming Area 4 run-timing by species
c) daily Area 4 fishing pattern by date (ie. area and effort) and pattern of weed-line use
d) schedule of weedline and steelhead catch and release impacts

For the simulations, inputs a, b, and d were held constant while input c was varied. Changes in harvest rate were measured relative to the pattern for the 1985-1991 base-period. For simulation purposes, a run size of 2.3 million was used as the "expected" run entering Area 4 . Run sizes for steelhead, coho, chinook, and pink salmon were set at one, due to uncertainty in the expected run sizes for these species.

The calculations used in the fishery simulations were simply a rearrangement of equation (3), and followed the forward-construction methodology described by Starr and Hilborn (1988):
5)

$$
\begin{aligned}
& C_{i j}=h_{i j} N_{i j} \\
& E_{i j}=N_{i j}-C_{i j}
\end{aligned}
$$

where C_{i} was daily catch in sub-area j, h_{i} was the daily harvest rate from equation (1), N_{i} was daily abundance, and E_{i} was daily escapement.

The performance of the base-period model was also tested under stochastic conditions, using Monte Carlo simulation (Crystal Ball 1991, Decisioneering Inc.). Two calculations in the model can be expected to be sensitive to stochastic variation: a) the sub-area daily harvest rates calculated from equation (1), and b), the daily proportions of each species entering the fishery, as determined from their run-timing curves. Although the prediction of effort by sub-area is also subject to variability, the objective of the Monte Carlo simulation was to find the most likely baseperiod harvest rates when effort was held constant.

The Monte Carlo simulation was configured by specifying probability distributions for (a) and (b) above, and running the model for 20,000 trials to find the probability distributions of the Area 4 harvest rates for all species. For the sub-area daily harvest rates, triangular probability distributions were defined about the point estimates for the base-period simulation, using, as maximum and minimum values, the harvest rates calculated when the 95% confidence limits for q were placed into equation (1). For the run-timings, triangular probability distributions were specified about the peak day of entry in Area 4 for each species, with one week (seven days) on either side of the peak used to specify the minimum and maximum values. To be consistent with other species, a normal run-timing curve was defined for sockeye, using a peak day of entry into Area 4 of July 21 , and a standard deviation of 12.5 days. The standard deviation of the run-timing curves for each species was not altered for the Monte Carlo simulation, to examine the impacts of early versus late peak timing, rather than protracted versus compressed run duration.

Adjustments to daily harvest rates: Gillnet weedlines and steelhead catch and release

When specified as modepl options, gillnet weedline and steelhead catch and release impacts were directly applied to the daily harvest rates calculated from equation 1 . Weedlines are gillnets suspended below the water surface, so that fish near the surface can swim over the net without being caught. For surface oriented species, such as steelhead (Ruggerone et al. 1990), using weedlines in Area 4 is expected to reduce steelhead harvest rates considerably (Lewensky 1992). Catch and release of live steelhead from gillnets is another method of reducing steelhead harvest rates. Catch and release of live steelhead was first proposed by the North Coast Advisory Board in 1992. Steelhead surviving captures are placed in holding tanks, revived, and later released into areas where recapture is reduced. For the fishery simulations, weedline and catch and release impacts were modelled as expected percentage reductions in daily harvest rate.

RESULTS

A) Sockeye Run Reconstruction

The results of the sockeye run-reconstructions for 1985-1991 are presented in Appendix 1. The reconstructed sockeye harvest rates are highest in the River/Gap/Slough, and lowest in the Sound and Outside. Average effort in Area 4 peaks in the third to fourth weeks of July (Figure 2), corresponding to the general timing of the fishery on sockeye. Relative effort also increases noticeably in the River/Gap/Slough as the season progresses, and decreases in the other sub-areas (Figure 3). This probably reflects of the fleet's tendency to "follow" the sockeye and pink runs into the river as the season progresses, and the departure of much of the fleet after early August, leaving mostly river-gillnets in the fishery.

Figure 4 shows the relationship between daily sockeye harvest rate and daily effort in each sub-area for 1985-1991. Although the fitted curves indicate a progressive increase in daily harvest rate with effort, there is considerable variability in the raw data when more than one or two hundred boats are fishing. Figure 5 summarizes the modelled daily harvest rate versus effort relationship among the sub-areas. For any level of fishing effort, daily harvest rates are highest in the River/Gap/Slough, and lowest in the Sound and Outside. This suggests differential catchability among areas, with sockeye becoming more vulnerable to capture as they approach the river mouth. Increasing sockeye vulnerability toward the river mouth may be related to the funnelling effect of the Skeena River estuary, where fish are concentrated by shallower water and restricted topography.

B) Species Run-timing

The average 1985-1991 run-timings for each species are shown in Figure 6. For sockeye and steelhead, the 50% peak dates of entry into the fishery were estimated to be thirteen days apart (July 21 and August 3 respectively, Table 1), the same as reported by Ward et al. (1993). For early-run coho, and pink salmon, the 50% peak dates of entry were August 6 and 7 respectively. The 50% peak date of entry for chinook was July 1 .

Figure 7 compares the annual reconstructed run-timings generated for steelhead and sockeye, expressed as cumulative proportions. Unlike sockeye, the steelhead reconstructions show considerable annual variation. Some of this variation appears due to the nature of test fishery CPUE data for steelhead. Many daily CPUE values for steelhead are consecutively low or zero. This creates "holes" in the reconstructions calculated using equation 4. As well, some variation may be due to annual variability in stock-specific steelhead abundance. Because of these sources of variability, a normal curve (Figure 8) is considered a better approximation of runtiming for steelhead. The same concerns apply to the timing curves generated for early-run coho, chinook, and, to a lesser extent, pink salmon. Actual catch and escapement data is needed to further refine the run-timings for steelhead, coho, chinook and pink salmon used in the model.

C) Fishery Simulation

- 1985-1991 Base-Period Harvest Rates: point estimates

The result of the 1985-1991 base-period simulation is presented in Table 2. The baseperiod simulation used a 1985-1991 fishing pattern calculated as follows:

Julian Week	Week Ending	Average Days Fished	1985-1991 Actual Mean Effort (1st day)	1985-1991 Model Effort (1st day)
26	June 25 - July 01	0	0	
27	July 02 - July 08	1	413	0
28	July 09 - July 15	2	466	438
29	July 16 - July 22	2	679	546
30	July 23 - July 29	4	709	653
31	July 30 - Aug 05	3	608	761
32	Aug 06 - Aug 12	3	494	623
33	Aug 13 - Aug 19	3	341	485
34	Aug 20 - Aug 26	3	220	347
35	Aug 27 - Sept 02	1	88	210
		------		72

From table 2, the point estimate Area 4 harvest rates, for the base-period, were 40.6% for sockeye, 36.3% for steelhead, 34.8% for coho, 33.7% for pinks, and 20.4% for chinook. The base-period harvest rates on steelhead sub-stocks were 42.3% for early-run (eg. Morice), 36.5% for middle-run (eg. Babine), and 30.5% for late-run (eg. Kispiox). The simulated sockeye harvest rate of 40.6% compares with the actual average 1985-1991 sockeye harvest of 41.2%, and the actual unweighted average sockeye harvest rate of 39.2% (Table 3).

- 1985-1991 Base-Period Harvest Rates: Monte Carlo estimates

The results of the Monte Carlo simulation are shown in Figures 9, 10, and 11. After 20,000 trials, the most probable (modal) Area 4 harvest rates, for the base-period, were calculated to be 42.3% for sockeye, 35.5% for steelhead, 34.9% for coho, 33.3% for pinks, and 20.2% for chinook. The modal base-period harvest rates on steelhead sub-stocks were 42.6% for early-run (eg. Morice), 37.8% for middle-run (eg. Babine), and 30.4% for late-run (eg. Kispiox).

These results are similar to the point estimates generated from a single model run. However, unlike the point estimate simulation, the Monte Carlo simulation describes the certainty about the modal estimates. For example, the 90% certainty ranges for the base-period were harvest rates were: sockeye ($38.7 \%-42.4 \%$), steelhead ($30.2 \%-39.0 \%$), coho ($29.0 \%-39.3 \%$), pinks ($27.8 \%-38.5 \%$), chinook ($14.5 \%-26.7 \%$), early-run steelhead ($39.4 \%-42.7 \%$), middle-run steelhead ($30.8 \%-40.7 \%$), and late-run steelhead ($23.9 \%-36.2 \%$). Based on these results, the sensitivity of the model is considered to be well within the ranges required for management purposes.

Interestingly, for both sockeye and early run steelhead, the harvest rate probability distributions are positively skewed, with relatively "tight" 90% certainty ranges. For other species, the harvest rate probability distributions are more symmetric, and have wider 90% certainty ranges. This is likely due to the interaction between the fishing pattern, the daily harvest rates produced by the fishing pattern, and the run-timing for each species. Daily harvest rates, which are maintained at their highest levels when effort peaks later in July, appear to offset the effects of variable peak run-timing for both sockeye and early steelhead, thus resulting in Area 4 harvest rates exhibiting tighter certainty ranges. For other species, the interaction between daily harvest rates and run-timing is more variable, thus resulting in Area 4 harvest rates exhibiting wider certainty ranges.

-1994 Pre-Season Fishery Simulations

The results of several point estimate simulations, for the 1994 fishing season, are shown in Table 4. The simulation runs are presented as examples of what different fishery objectives might produce, and are not intended as recommendations for specific management options.

The simulations were configured by altering the fishing pattern (specific dates fished) to achieve the stated objectives. The simulations summarize a range of potential management options from status quo (\#2) to consideration of early-timed steelhead impacts (\#9). The schedule of 1.2 m weedline impacts (60-mesh standard nets) used in the simulations is presented in Table 5. Comments regarding these simulation runs are as follows:

1) Base Case

The actual Area 4 sockeye harvest rate over the base-period was approximately 40% (eg. (39.2% to 41.2%, depending on the weighting method used). The steelhead harvest rate is estimated to be 36%. A 50% reduction would result in a steelhead harvest rate of 18%.

2) Recent Management

 -plus steelhead catch and releaseThis model run shows the expected benefits from the steelhead catch and release program, and the coho conservation plan of recent years (two days per week in early August).
The steelhead and sockeye harvest rates are both reduced by 4%.

3) Recent Management
 -plus steelhead catch and release, plus weedlines in all areas

This model run is similar to \#2, with the addition of 1.2 m weedlines in all areas. The additional impact of weedlines reduces the steelhead harvest rate to 20%, close to the 18% target. Sockeye harvest rate is reduced to 31%, equivalent to a catch reduction of 212,000 sockeye.
4) $\mathbf{5 0 \%}$ steelhead harvest rate reduction
-plus steelhead catch and release, plus weedlines in all areas
-fishing pattern moved earlier to increase sockeye catch
-fishing time increased to account for reduced sockeye catch with weedlines
This version is similar to \#3 with the fishing pattern altered to reduce the steelhead harvest rate to the 18% target, while improving the sockeye harvest rate to within 2% of the base case.

5) 50% steelhead harvest rate reduction

-plus steelhead catch and release, plus weedlines in outside areas only
-fishing pattern moved earlier to increase sockeye catch
-fishing time increased to account for reduced sockeye catch with weedlines
This version is similar to \#3 and \#4 except weedlines are only used in outside fisheries. The steelhead 50% reduction is achieved, while the sockeye harvest rate is improved to slightly above the base case.

6) $\mathbf{5 0 \%}$ steelhead harvest rate reduction

-plus steelhead catch and release, plus weedlines in all areas
-fishing pattern moved earlier to increase sockeye catch
-differential impact on river fishers
-fishing time increased to account for reduced sockeye catch with weedlines
This version is similar to \#3 and \#4 except river fisheries are reduced while maintaining outside fisheries. The steelhead reduction is within the target range, while the sockeye harvest rate is similar to the base case.

7) $\mathbf{5 0 \%}$ steelhead harvest rate reduction

-plus steelhead catch and release, plus weedlines in all areas
-fishing pattern adjusted to maximize sockeye catch
-August fisheries 'eliminated'.
-fishing time increased to account for reduced sockeye catch with weedlines
This run 'maximizes' sockeye catch by switching effort from the August fishery to the July sockeye period. The sockeye harvest is increased by 5% over the base-period, however this
incremental catch is at the expense of the August fishery and reduces the benefits to early steelhead runs.

8) 50\% steelhead harvest rate reduction

-plus steelhead catch and release, no weedlines
Here, the model run shows the fishing pattern required to achieve the 50% steelhead harvest rate reduction if weedlines are not part of the package. As expected, the required reduction in fishing time is significant, especially in August. Maximum harvest rate reduction for coho is shown by this fishing pattern.

9) 50% early steelhead harvest rate reduction -plus steellhead catch and release, plus weedlines in all areas -fishing time increased to account for reduced sockeye catch with weedlines

This version reduced the harvest rate on early steelhead to 50%. Achieving this objective requires a major reduction in sockeye harvest since the timing of the early steelhead stocks more closely overlaps with sockeye.

From table 4, several general aspects of the simulation runs are apparent. First, the modeled Area 4 harvest rates depend on when fishing occurs in relation to the run-timing curves for each species. For sockeye, maximum harvest rates occur when fishing effort is high during mid to late July. For steelhead, minimum harvest rates occur when effort is low from late July through mid-August, and/or when weedlines are used. For coho and pinks, minimum harvest rates occur when effort is low from early to mid-August.

Second, sub-stock Area 4 harvest rates on steelhead are only reduced when fishing effort is low in relation to their run-timing. For "early" timed steelhead stocks (late July), harvest rates are only reduced when late July effort is reduced, or when weedlines are specified during periods of high sockeye directed effort. The simulations clearly identify a fundamental dilemma for the Area 4 fishery: harvest rates for steelhead can be changed for all stocks in aggregate, but not equally for all sub-stocks at once. This idea applies to all species.

Comments on Weedline Impacts and Catch and Release for Steelhead

In waters outside the River/Gap/Slough, 1.2 m weedlines are expected to reduce harvest rates on all species, but with a much greater reduction for steelhead because of their surface orientation. In the River/Gap/Slough, weedlines are expected to reduce harvest rates on all species except coho (Table 5). It should be stressed, however, that the data in Table 5 were generated under test fishing conditions. The actual impacts of fishing weedlines in Area 4 are not known, and need to be evaluated. Currently, uncertainty exists regarding the impacts of using weedlines under full fleet conditions. To reflect this uncertainty, the weedline impacts used in the model were arbitrarily reduced by approximately 30%. Further assessment of the theoretical and
actual impacts of fishing weedlines in Area 4 is required.
The reduction in Area 4 harvest rates attributable to catch and release depends upon the number of boats participating (compliance), the mortality rate upon landing, and the probability of recapture after release. Preliminary assessment suggests that compliance rates are currently low, while the mortality rate upon landing is high (70\%). As such, the current benefits of catch and release are probably quite low. In the model, catch and release benefits are modeled as a 5\% reduction in the daily harvest rate. Major improvements in compliance and landing mortality would be required for catch and release to further reduce steelhead harvest rates in Area 4.

CONCLUSIONS

This report describes a daily simulation model for the Area 4 commercial gillnet fishery. The model evaluates the effects of various gillnet fishing patterns on the catch and escapement of sockeye, steelhead (including sub-stocks), early-run coho, chinook, and pink salmon migrating through four sub-areas of Area 4. The model is a useful tool for evaluating alternate management options for the Area 4 fishery. The model also provides managers with an objective and consistent framework for pre-season planning. Caution, however, should be used in relying on the harvest rate calculations for designing fisheries without some form of in-season evaluation program in place. The model generates "average" expected impacts for the Area 4 fishery, and in-season runtiming, run sizes, effort patterns, and migration rates can differ from the pre-season predictions generated by the model. As such, the model simulations should only be used to guide the inseason management process.

For sockeye, the model does well in predicting the average impacts of fishing in Area 4. Reconstructed sockeye timing into Area 4 varies little from year to year, and using effort to predict daily sockeye harvest rate results in average sub-area catches and escapements that agree relatively well with actual data. For other species, the model predictions are currently the best available, and will eventually need to be calibrated against actual catch and escapement data to assess their accuracy.

RECOMMENDATIONS

1) The model can be used for Area 4 management purposes subject to a continuation of work directed at refining run-timing, catchability, and sensitivity of the model to stochastic variation and violation in assumptions.
2) Stock specific data for all species are needed to further refine the run-timings used in the model. Specifically, Area 4 catch and escapement monitoring programs for these species should be developed, as well as stock identification techniques for stock-specific evaluation of runtiming.
3) Studies should be implemented to examine the theoretical and empirical impacts of fishing gillnets with weedlines in Area 4. Specifically, the use of weedlines in a full fleet situation should b evaluated.

ACKNOWLEDGMENTS

The assistance of Dr. Art Tautz (B.C. Ministry of Environment, Lands, and Parks), and Dave Peacock (Department of Fisheries and Oceans) in developing the Area 4 model is greatly appreciated. The comments of PSARC (Pacific Stock Assessment Review Committee) reviewers Paul Ryall (Department of Fisheries and Oceans) and Dr. Russ Frith (LGL Environmental Consultants) were especially valuable and helped to improve the paper considerably. Thanks to Dr. Marc Labelle (B.C. Ministry of Environment, Lands, and Parks) for assisting with the Monte Carlo simulations. This paper has been formally reviewed and approved by PSARC and the Pacific Region of the Department of Fisheries and Oceans.

REFERENCES

Cox-Rogers. S., and L. Jantz. 1993. Recent trends in the catchability of sockeye salmon in the Skeena River gillnet test fishery, and impacts on escapement estimation. Can. Manuscr. Rep. Fish. Aquat. Sci. 2219: iii +19 p.

Gilhousen, P. 1992. Estimation of Fraser River sockeye escapements from commercial harvest data: 1892-1944. Internat. Pacific Salmon Fish. Comm. Bulletin XXVII. 114p.

Hilborn, R., and C. Walters. 1992. Quantitative Fisheries Stock Assessment. Chapman and Hall. 570 p .

Lewensky, V. 1992. Experimental Assessment of Weedline-Modified Mono- and Multifilament gillnets in statistical Area 4 (Skeena), 1992. Western Renewable Resources. Vernon.

Ruggerone, G.T., T.P. Quinn, I,A. McGregor, and T.D. Wilkinson. 1990. Horizontal and vertical movements of adult steelhead trout, Oncorhynchus mykiss, in the Dean and Fisher channels, British Columbia. Can J. Fish. Aquat. Sci. 47: 1963-1969.

Smith. H.D., and F.P. Jordan. 1973. Timing of Babine Lake sockeye salmon stocks in the northcoast fishery as shown by several taggings at the Babine counting fence and rates of travel through the Skeena and Babine Rivers. Fish. Res. Board Can. Tech Rep. 418. 31p.

Sprout, P. and R. Kadowaki. 1987. Managing the Skeena River sockeye salmon (Oncorhynchus nerka) fishery- the process and the problems. p. 385-395. In H.D. Smith, L. Margolis, and C.C. Wood. [ed.] Sockeye salmon (Oncorhynchus nerka) population biology and future management. Can. Spec. Publ. Fish. Aquat. Sci. 96.

Starr, P. and R. Hilborn. 1988. Reconstruction of harvest rates and stock contribution in gauntlet salmon fisheries: application to British Columbia and Washington sockeye (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci. 45: 2216-2229.

Takagi, K., and H.D. Smith. 1973. Timing and rate of migration of Babine lake sockeye stocks through the Skeena and Babine Rivers. Fish. Res. Board. Can. Tech. Rep. 419. 61p.

Ward, B.R., A.F. Tautz, S. Cox-Rogers, and R.S. Hooton. 1993. Migration timing and harvest rates of the steelhead trout populations of the Skeena River system. PSARC Working Paper S93-06.

	AREA 4 (1) 5O\% PEAK DATE	NORMAL CURVE STANDARD DEVIATION
CHINOOK	JULY 1	12.5
SOCKEYE	JULY 21	N/A
STEELHEAD	AUGUST 3	12.5
-early run	JULY 27	11.0
-middle run	AUGUST 5	11.0
-late run	AUGUST 9	11.0
COHO (early)	AUGUST 6	12.5
PINK (even)	AUGUST 7	12.5
PINK (odd)	AUGUST 1	12.5

(1) ENTERING FISHERY

Table 1. Average 1985-1991 peak 50\% dates for salmon entering Area 4, as calculated for use in the model.

TABLE 1	allsx	Coho	Chin	Pink	Chum	Mors	KisS	BulS	Zyms	SusS	BabS	OthS	Alls
Incoming Run	3200000	1.000	1.000	1.000	0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Oth. Fis. Cat.	800000	0.250	0.250	0.250	0	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250
Area 4 Run (ac)	2400000	0.750	0.750	0.750	0	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750
Area 4 Run (mo)	2397978	0.750	0.745	0.749	0	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750
Oth. Fis. Cat. catch	800000	0.250	0.250	0.250	0	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250
esc	2397978	0.750	0.745	0.749	0	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750
h.r	0.25	0.250	0.251	0.250	0.00	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250
OUTSIDE													
catch	203027	0.053	0.028	0.051	0	0.066	0.045	0.055	0.066	0.066	0.055	0.053	0.055
esc	2194951	0.697	0.716	0.699	0	0.684	0.705	0.695	0.684	0.684	0.695	0.697	0.695
h.r	0.08	0.070	0.038	0.068	0.00	0.088	0.060	0.074	0.088	0.088	0.074	0.071	0.074
SOUND catch	154343	0.038	0.025	0.036	0	0.049	0.032	0.040	0.049	0.049	0.040	0.038	0.040
esc	2040608	0.659	0.691	0.662	0	0.635	0.673	0.655	0.635	0.635	0.655	0.658	0.655
h.r	0.07	0.054	0.035	0.052	0.00	0.072	0.045	0.057	0.072	0.072	0.057	0.055	0.058
SMITH catch	206532	0.045	0.040	0.043	0	0.062	0.037	0.048	0.062	0.062	0.048	0.045	0.049
esc	1834076	0.614	0.651	0.620	0	0.573	0.636	0.607	0.573	0.573	0.607	0.613	0.606
h.r	0.10	0.068	0.058	0.064	0.00	0.098	0.054	0.073	0.098	0.098	0.073	0.069	0.074
R/G/S catch	410102	0.126	0.059	0.123	0	0.140	0.115	0.131	0.140	0.140	0.131	0.128	0.128
esc	1423974	0.489	0.593	0.497	0	0.433	0.521	0.476	0.433	0.433	0.476	0.484	0.478
h.r	0.22	0.205	0.090	0.198	0.00	0.244	0.181	0.216	0.244	0.244	0.216	0.210	0.211
All Area 4 catch	974004	0.261	0.152	0.252	0	0.317	0.229	0.274	0.317	0.317	0.274	0.266	0.272
esc	1423974	0.489	0.593	0.497	0	0.433	0.521	0.476	0.433	0.433	0.476	0.484	0.478
Area 4 H.R.	0.406	0.348	0.204	0.337	0.000	0.423	0.305	0.365	0.423	0.423	0.365	0.354	0.363
AREA 4 Exploit.	0.304	0.261	0.152	0.252	0.000	0.317	0.229	0.274	0.317	0.317	0.274	0.266	0.272
TOTAL EXPLOIT.	0.555	0.511	0.403	0.503	0.000	0.567	0.479	0.524	0.567	0.567	0.524	0.516	0.522

Table 2. Predicted average Area 4 harvest rates for sockeye, early-run coho, chinook, pink, and steelhead salmon for the base-period years 1985-1991.

	$\begin{gathered} \text { ACTUAL } \\ 1991 \\ \hline \end{gathered}$	$\begin{array}{r} \text { ACTUAL } \\ 1990 \\ \hline \end{array}$	$\begin{array}{r} \text { ACTUAL } \\ 1989 \\ \hline \end{array}$	$\begin{array}{r} \text { ACTUAL } \\ 1988 \\ \hline \end{array}$	$\begin{array}{r} \text { ACTUAL } \\ 1987 \\ \hline \end{array}$	ACTUAL 1986	$\begin{array}{r} \text { ACTUAL } \\ 1985 \\ \hline \end{array}$	$\begin{array}{r} \text { ACTUAL } \\ 85-91 \\ \text { AVG } \\ \hline \end{array}$	$\begin{array}{r} \hline \text { MODEL } \\ 85-91 \\ \text { AVG } \\ \hline \end{array}$
Incoming Run	3088471	2577331	2509299	4044396	2619753	1726081	5850501	3202262	3200000
Oth. Fis. Cat.	772118	644333	627325	1011099	654938	431520	1462625	800565	800000
Area 4 Run (ac)	2316353	1932998	1881974	3033297	1964815	1294561	4387876	2401696	2397978
Oth. Fis. Cat. catch	772118	644333	627325	1011099	654938	431520	1462625	800565	800000
esc	2316353	1932998	1881974	3033297	1964815	1294561	4387876	2401696	2397978
h.r	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.250	0.250
OUTSIDE									
catch	208887	150102	114352	192835	93038	64863	530149	193461	203027
esc	2107466	1782896	1767622	2840462	1871777	1229698	3857727	2208235	2194951
h.r	0.090	0.078	0.061	0.064	0.047	0.050	0.121	0.081	0.085
SOUND	133976	99380	89517	213921	96886	94727	493054	174494	154343
esc	1973490	1683516	1678105	2626541	1774891	1134971	3364673	2033741	2040608
h.r	0.064	0.056	0.051	0.075	0.052	0.077	0.128	0.079	0.070
SMITH catch	267147	259757	144248	399473	126284	113784	374501	240742	206532
esc	1706343	1423759	1533857	2227068	1648607	1021187	2990172	1792999	1834076
h.r	0.135	0.154	0.086	0.152	0.071	0.100	0.111	0.118	0.101
R/G/S catch	352539	318771	274398	706867	200466	177076	635996	380873	410102
esc	1353804	1104988	1259459	1520201	1448141	844111	2354176	1412126	1423974
h.r	0.207	0.224	0.179	0.317	0.122	0.173	0.213	0.212	0.224
All Area 4	962549	828010	622515	1513096	516674	450450	2033700	989571	974004
esc	1353804	1104988	1259459	1520201	1448141	844111	2354176	1412126	1423974
TOTAL	2316353	1932998	1881974	3033297	1964815	1294561	4387876	2401696	2397978
Area 4 H.R.	0.416	0.428	0.331	0.499	0.263	0.348	0.463	0.412	0.406
Area 4 H.R. (1)	-	-	*	- 374	- ${ }^{1}$	- ${ }^{-201}$	0.348	0.393	0.304
AREA 4 Exploit.	0.312	0.321	0.248	0.374	0.197	0.261	0.348	0.309	0.304
TOTAL EXPLOIT.	0.562	0.571	0.498	0.624	0.447	0.511	0.598	0.559	0.554

Area 4 H.R. [1] $=$ unweighted

Table 3. Comparison of actual average 1985-1991 sockeye catch, escapement, and harvest rate in Area 4 with the results obtained for the base-period simulation.

			WEE			EARLY			EARLY				
RUN	DESCRIPTION	SUB-AREAS	$\begin{aligned} & \text { FISHING } \\ & \ldots \times \text { JULY } \end{aligned}$	PATTERN AUGUST	$\begin{aligned} & \text { STLHD } \\ & \text { H.BATE.. } \end{aligned}$	$\begin{aligned} & \text { STLHD } \\ & \text { HIBATE } \end{aligned}$	sock. H. AATE	PINK HRATE	COHO H.BATE	SOCKEYE CATCH...	SOCKEYE ESCAPE	FISHING WEEKS	FISHING
1	BASE 1986-91	Outside (1) River	$\begin{array}{lllll} 0 & 1 & 2 & 2 & 4 \\ 0 & 1 & 2 & 2 & 4 \end{array}$	$\begin{array}{llllll} 3 & 3 & 3 & 3 & 1 \\ 3 & 3 & 3 & 3 & 1 \end{array}$	36.3\%	42.4\%	40.0\%	33.7\%	34.8\%	927,704	1,370,368	9	22
2	Recent management Coho + C\&R	Outside (1) River	$\begin{array}{lllll} 0 & 1 & 2 & 2 & 4 \\ 0 & 1 & 2 & 2 & 4 \end{array}$	$\begin{array}{lllll} 3 & 2 & 2 & 3 & 1 \\ 3 & 2 & 2 & 3 & 1 \end{array}$	31.7\%	39.0\%	38.7\%	30.0\%	31.1\%	843,766	1,464,296	9	20
3	Recent management Coho + C\&R + weed(all)	River Outaide (1) River	$\begin{array}{lllll} 0 & 1 & 2 & 2 & 4 \\ 0 & 1 & 2 & 2 & 4 \end{array}$	$\begin{array}{lllll} 3 & 2 & 2 & 3 & 1 \\ 3 & 2 & 2 & 3 & 1 \end{array}$	20.3\%	25.0\%	31.4\%	25.6\%	30.4\%	722,383	1,675,679	9	20
4	60% steelhead H.R Red. C\&R + weed(all) consider fishing pattern consider sockeye catch	Outside (1) River	$\begin{array}{lllll} 1 & 2 & 5 & 4 & 2 \\ 1 & 2 & 6 & 4 & 2 \end{array}$	$\begin{array}{lllll} 2 & 2 & 1 & 1 & 0 \\ 2 & 2 & 1 & 1 & 0 \end{array}$	17.2\%	25.0\%	38.7\%	20.6\%	24.7\%	888,769	1,409,293	9	20
5	60\% steelhead H.R Red. C\&R + weed (out only) consider fishing pattern consider sockeye catch	Outaide (1) River	$\begin{array}{lllll} 1 & 2 & 5 & 4 & 3 \\ 1 & 2 & 6 & 4 & 3 \end{array}$	$\begin{array}{llllll} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{array}$	18.7\%	29.0\%	42.0\%	19.6\%	21.3\%	965,667	1,332,496	9	19
6	60\% steelhead H.R Red. C\&R + weed(all) reduce river flahing pattern consider sockeye catch	$\begin{aligned} & \text { Outside (1) } \\ & \text { River } \end{aligned}$	$\begin{array}{lllll} 1 & 2 & 6 & 5 & 3 \\ 1 & 2 & 5 & 4 & 2 \end{array}$	$\begin{array}{llllll} 2 & 2 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{array}$	17.4\%	28.0\%	41.3\%	21.7\%	25.4\%	949,388	1,348,674	9	23
7	60\% steelhead H.R Red. C\&R + weed(all) maximize sockeye oatch	Outside (1) River	$\begin{aligned} & 1 \\ & 1 \end{aligned} \mathbf{6} 654$	$\begin{array}{llll} 3 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{array}$	18.8\%	31.0\%	48.2\%	20.6\%	24.7\%	1,061,882	1,236,180	9	22
8	60\% steelhead H.R Red. C\&R maximize sockeye catch No weedllines	Outside (1) River	$\begin{array}{lllll} 1 & 2 & 4 & 3 & 2 \\ 1 & 2 & 4 & 3 & 2 \end{array}$	$\begin{array}{lllll} 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \end{array}$	18.8\%	31.0\%	37.3\%	16.6\%	18.9\%	868,060	1,440,002	9	14
9	60\% early stlhd. H.R Red. C\&R + weed(all) consider fishing pattern consider sockeye catch	Outside (1) River	$\begin{aligned} & 12322 \\ & 12322 \end{aligned}$	$\begin{array}{lllll} 2 & 2 & 2 & 1 & 0 \\ 2 & 2 & 2 & 1 & 0 \end{array}$	14.7\%	19.0\%	28.2\%	18.3\%	22.1\%	648,722	1,649,340	9	17

1) eq. Outside, Sound, and Smith
Table 4. The results of various simulation runs showing the effects of alternative fishing patterns
on Area 4 harvest rates for steelhead, sockeye, pink, and coho. Changes in harvest rate are
compared to pattern for the $1985-1991$ base period. The weekly fishing pattern represents the
number of days fished within each statistical week. The weedline impacts used in the simulations
represent data for 1.2 m 60 -mesh standard nets.

-

AREA	$\begin{array}{r} \text { YEAR } \\ \text { TESTED } \end{array}$	TVPE OF WEEDLINE	NET TYPE	TESTED LOCATION	$\%$ CHANGE STLHD.(1)	\% CHANGE SOCK (1)	\% CHANGE PINK(1)	\% CHANGE COHO(1)	\% CHANGE CHINOOK 11$)$
4	1991	1.20 METER	60 MESH-STD	MARINE	-76\%	-29\%	-30\%	-23%	N/A
4	1991	0.80 METER	60 MESH-STD	MARINE	-45\%	-22\%	-16\%	-11\%	N/A
4	1991	0.40 METER	60 MESH-STD	MARINE	-40\%	-16\%	-12\%	-21\%	N/A
4	1991	1.20 METER	60 MESH-STD	RIVER	-39\%	-28\%	- 24%	6\%	N/A
4	1992	1.20 METER	60 MESH-STD	MARINE	-65\%	-13\%	-24%	-17\%	N/A
4	$\begin{array}{r} 91-92 \\ \text { AVG } \end{array}$	1.20 METER	$60 \mathrm{MESH}-\mathrm{STD}$	MARINE	-70\%	-21\%	-27\%	-20\%	N/A
4	1992	NONE	60 MESH-MONO	MARINE	-46\%	0\%	63\%	7\%	N/A
4	1992	1.20 METER	60 MESH-MONO	MARINE	-69\%	17\%	92\%	-4\%	N/A
4	1992	NONE	90 MESH-MONO	MARINE	-36\%	50\%	122\%	58\%	N/A
4	1992	1.20 METER	90 MESH-MONO	MARINE	-73\%	25\%	54\%	31\%	N/A

(1) CHANGES IN CATCH RELATIVE TO BO-MESH STD NET

[^0]

Figure 1. Map of statistical Area 4 at the mouth of the Skeena River, showing the four sub-areas used in the model : (1) Outside(4-1, 4-2, 4-3, 4-4, 4-5), (2) Sound (4-9), (3) Smith (4-12), and (4) River/Gap/Slough (4-13, 4-14, 4-15).

Figure 2. Average 1985-1991 total Area 4 by date. The first graph shows the actual mean effort calculated by date from 1985-1991. The second graph shows the means aligned to the mid-point of each Julian calender week to account for differences in fishery start dates attributable to calender variation among years.

Figure 3. Average 1985-1991 sub-area proportions of total Area 4 effort by date.

[^1]

Figure 5. Summary of figure 4, showing the relationship between daily sockeye harvest rate and daily effort in each sub-area of Area 4 from 1985-1991.

AREA 4 TIMING

Figure 6. Average 1985-1991 run timing for chinook, sockeye, steelhead, coho, and pink salmon entering Area 4.

Figure 7. 1986-1991 sockeye and steelhead run timing into Area 4, expressed as cumulative daily proportions.

AREA 4 STEELHEAD TIMING

Figure 8. Average 1985-1991 steelhead run timing into Area 4, showing the smoothed proportion CPUE curve, and the normal curve used in the model to represent steelhead run timing.

Figure 9. Probability distributions for 1985-1991 base-period Area 4 harvest rates for sockeye, steelhead, and coho, as obtained from Monte Carlo simulation.

Figure 10. Probability distributions for 1985-1991 base-period Area 4 harvest rates for pinks, chinook, and early-run steelhead (Morice) as obtained from Monte Carlo simulation.

Figure 11. Probability distributions for 1985-1991 base-period Area 4 harvest rates for middle-run (Babine) and late-run (Kispiox) steelhead as obtained from Monte Carlo simulation.

APPENDIX 1. 1985-1991 Area 4 sockeye run-reconstruction through four sub-areas of Area 4 (see Figure 1).

5	皆㓪
8888888888888888888888888888888888	哀
	衰
	登
	害
	g
8888888888888888888888888888888888	홍
	5
000000000000000000000000	\％
	客
	玉
8888088888888885888888888888888888	言
	랄
	皆
\because	\％
＊	ฐ
888878888888888888888888888888888	$\frac{\text { g }}{6}$
	閏
－000000000000000000000	等
\％	駺
三	\％
	$\frac{3}{\text { a }}$

器 無
888888888888888888888888888888888 高
 末
－กั 童
\because 1
क $\stackrel{\circ}{2}$
83988888888888888888888888888888 K \％
 咢
\circ 药
5 苞
$=$ ま
8.8088888888888888888888888888888 会
 章
${ }^{\circ}{ }^{\circ}$ $\frac{\stackrel{3}{8}}{8}$
๕ 离
\pm 战
8.58888888888888888888888888888888 รี่
 喜
－ ！
$\%$ $\stackrel{1}{1}$
$\%$
 咅
言 意

ぎきま 玉̊ 产
\％8888888888888888888888888888 $\stackrel{\rightharpoonup}{8} \stackrel{\rightharpoonup}{8}$
 $\stackrel{\text { 訁 }}{\text { ⿷匚⿳ }}$
70 总
\＃ 药
－ 等
玉888888888888888888888888888888 高
 I
－ 言
\therefore 妥
－ 3
 高
 童
 $\xrightarrow{\text { き }}$
 总
さここの §
 号
 ！
 発
 皆
 $\%$
 喜

 品
58888888888888888888888888888888 高
 ！
2000000000000000000000000 登
\cong 勆
\because 玉
 豆
 皆
 $\frac{8}{8}$
Ξ のッチ ロミッチ 皆
－n＋n＝ann ※
 $\frac{\square}{8}$
 喜
 $\frac{5}{8}$
 発
$\pm=$ \％
\％ixion $\stackrel{\text { 旁 }}{ }$
 浆

 喜
タッ タッロッー＝＝＝ 三
 E

品

[^0]: Table 5. The expected change in catch for weedlines fished in Area 4. The data represent the percent change in catch, by species, compared to standard 60-mesh nets. (Source. Lewensky 1992).

[^1]:

