

Eat Or Be Eaten

Teacher's Answer Key
Presented by the Pacific Salmon Foundation

Eat or Be Eaten: Part 1

Given the importance of salmon to the ecosystems and peoples in the North Pacific, there are many scientists and researchers studying the relationships between salmon and the other animals in the marine food chain to better understand how changes at one level might be affecting salmon health and abundance. If you were a salmon scientist, what questions would you be asking about the food chain?

Come up with 3 research questions, and then for each one, develop a hypothesis or a prediction of what you think the answer is. For example:

Research question: How is climate change influencing energy production at the base of the food chain?
Prediction: Climate change is causing the timing of the phytoplankton bloom and the peak in zooplankton abundance to change.

TEACHER:

Once students have come up with their own research questions and hypotheses, share with them the following hypotheses that were developed by scientists working with the Pacific Salmon Foundation. Discuss whether or not the students had similar predictions/hypotheses, if students would change their predictions having seen these ones, or if they would recommend changes to the scientists' hypotheses based on what they've learned.

1. Juvenile salmon grow faster when there is more food available.
2. The composition and energetic quality of salmon prey (e.g. forage fish and zooplankton) influence salmon growth.
3. When the timing of the salmon migration lines up with the time when their prey is the most abundant, they grow faster and are bigger.
4. Where there are more predators, salmon have lower survival rates.
5. Some predators have become salmon specialists, knowing when and where to find salmon and eating more of them.
6. When there are fewer other fish for predators to eat (e.g. fewer forage fish), they will eat more salmon.

Eat or Be Eaten:Part 2

Scientists have similar research questions to you and go out and collect data to try to answer them. Below are a series of datasets related to salmon and the food chain. Use the data provided to create figures and draw inferences about the potential trophic interactions.

SALMON DIETS:

A diet that's high in essential fatty acids is important for the health and growth of juvenile salmon. The amount of fatty acids can be quite variable between different prey types. Calculate the sum and percent of each prey type at each sampling location. With these values, create a circle chart for each location depicting the salmon's diet composition. Which location has better prey availability and a higher quality diet (refer to the table of total fatty acids per prey group)? What might be the impact of juvenile salmon spending more time feeding in Location 1 ?

Location	Fish	Prey	Quantity
1	1	Crustaceans	79
		Larval Fish	3
		Gelatinous	4
	2	Crustaceans	23
		Larval Fish	1
		Gelatinous	9
	3	Crustaceans	13
		Larval Fish	0
		Gelatinous	102
	4	Crustaceans	17
		Larval Fish	1
		Gelatinous	64
	5	Crustaceans	10
		Larval Fish	0
		Gelatinous	215

		Sum	Percent
Totals	Crustaceans	142	26
	Larval Fish	5	1
	Gelatinous	394	73
	All	541	100

		Sum	Percent
Totals	Crustaceans	622	94
	Larval Fish	27	4
	Gelatinous	10	2
	All	659	100

Prey	Total fatty acids $(\mathrm{mg} / \mathrm{g})$
Crustaceans	16
Larval Fish	13
Gelatinous	0.8

Salmon Diets at Location 1

-Crustaceans - Larval Fish - Gelatinous

Salmon Diets at Location 2

FORAGE FISH:

A survey was conducted throughout the Strait of Georgia to measure juvenile salmon growth rates. They also looked at the stomach contents to see if there was a relationship between the abundance of forage fish and salmon growth (measured using hormone levels in blood samples from the salmon). Create a scatter plot with the number of herring in the salmon diets along the x-axis and the salmon growth hormone on the y-axis. Is there a trend?

MATCH OR MISMATCH:

A survey was conducted in the Strait of Georgia to determine how the number of salmon returns would change when they entered the ocean at different times relative to the availability of their prey. Zooplankton abundance was measured approximately once per week and juvenile salmon were released into the ocean on 3 specific dates (bolded in the table). Using the data below, create a line graph of the zooplankton abundance over time. Then add a secondary axis on the right hand side and overlay bars to represent the salmon return rate. What's the relationship between release timing, prey abundance, and returns?

Date	Zooplankton Abundance $\left(\right.$ per $\left.\mathrm{m}^{3}\right)$	\% Salmon Returns
07-Mar	100	
13-Mar	280	
18-Mar	960	
25-Mar	100	
01-Apr	430	
07-Apr	140	
13-Apr	230	
19-Apr	400	1.8
25-Apr	720	
01-May	480	
07-May	2080	
13-May	930	
19-May	420	
25-May	1270	
31-May	380	
06-Jun	360	600
12-Jun	220	200
18-Jun	110	
24-Jun	30-Jun	

MATCH OR MISMATCH FIGURE:

TEACHER:

How they choose to space out the axes may differ, but generally, figures should resemble this:

Salmon Return Rate Relative to Zooplankton Abundance

