

Black Cottonwood Restoration in the Lower Deadman River

Brenley Yuan, Restoration Biologist Fisheries and Oceans Canada Restoration Centre of Expertise

Knowledge Exchange Workshop on Restoring Watershed Resilience November 14, 2024

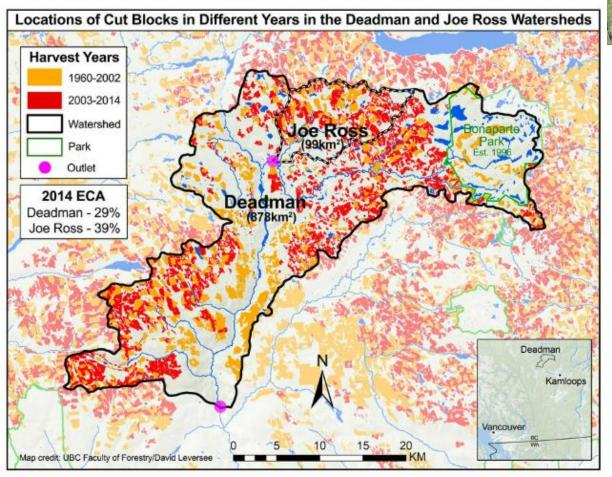
Pêches et Océans

Canada

Fisheries and Oceans Canada

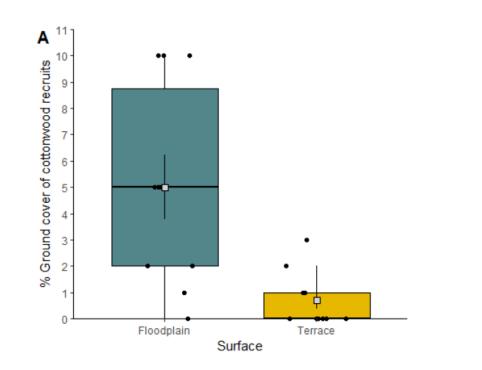
Cottonwood Riparian Ecosystems in BC's Southern Interior

- Oases in an otherwise arid environment, cottonwood forests are a key factor of resilience for a diversity of aquatic and terrestrial wildlife
- These ecosystems have been reduced to fragments due to land conversion, and disruption of natural flood processes that drive their formation and maintenance



Project Location

Deadman Watershed Stressors



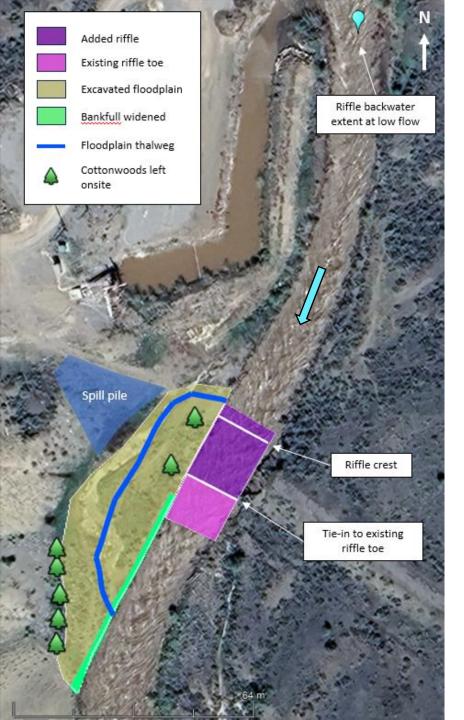
- Upper watershed: loss of forest cover and subsequent hydrological change
- **Middle reaches:** loss of floodplain function with private landownership
- Lower reaches: riparian flood damage, incision, and decoupling of historic floodplain → loss of cottonwood habitat

Traditional Ecological Knowledge highlighted **increased flood intensity** and physical changes indicative of a river that has shifted from a state of **equilibrium to degradation**

Low Cottonwood Cover in the Lower Deadman

Low cottonwood abundance likely due to low active floodplain area

How can we increase active floodplain area while addressing root causes?



Two Restoration Approaches

Process-based approach: creating conditions required for black cottonwood seedling recruitment to promote natural regeneration

Solar drip irrigation: reducing maintenance needs for planting after-care

Process-based Design Considerations

 Seasonally flooded floodplain with bare mineral soil Intermediate flood disturbance 4-week inundation period (on average) Floodplain < 1.5 m above baseflow water table Minimum depths over riffle crest Target depths in floodplain for juveniles Widen bankfull where needed Widen bankfull where needed 	Requirements for cottonwoods	Requirements for salmonids	Measures to slow continued incision
	 floodplain with bare mineral soil Intermediate flood disturbance 4-week inundation period (on average) Floodplain < 1.5 m above 	riffle crestTarget depths in	reduce tractive forceWiden bankfull where

Design criteria were used in HEC-RAS hydraulic modeling to create construction-level designs.

Riffle Construction

- Constructed over 2 days
- Created a backwater of 120 m and 1-m deep pool upstream at low flow
- Allowed for low flow passage
- Monitor over next freshet for high flow function

Floodplain Construction

- 1,700 m² area of floodplain excavated and recontoured
- Bankfull width widened along 60-m length
- Large woody debris added
- Planted, staked, and hydroseed
- Monitor over next 5-10 years for natural regeneration

Solar Drip Irrigation

- Drip lines hooked up to a solar-powered pump and timer
- Cistern or direct intake
- Relatively easy to setup

DFO Technical Bulletin Coming Out Soon

Pacific Salmon Initiative de la Stratégie Strategy Initiative relative au saumon du Pacifique

Salmon Habitat Restoration Center of Expertise Technical Bulletin Vol. X

Dec 2024

Solar-Powered Drip Irrigation System

By Natalie Mahara, Dave Pehl, & Brenley Yuan

SHR-COE Technical Bulletins

Technical Bulletins are published by the Salmon Habitat Restoration Center of Expertise (SHR-COE) in Pacific Region as a means of disseminating technical information, guidelines, workflows and instructions relevant to restoration practitioners.

This Technical Bulletin is for SHR-CoE staff and external restoration practitioners describing the design and construction of a solar powered drip irrigation system used for riparian restoration initiatives. This document aims to provide restoration practitioners with a method that requires very low maintenance while providing newly planted areas with a means to receive daily watering to increase the likelihood of planting success.

After 1 Irrigation Season

Next Steps

Long-term Monitoring

- Natural regeneration of floodplain vegetation
- Long-term survival of irrigated cuttings
- Floodplain inundation and function
- Geomorphic response
- Biological response > fish use

Expand to Other Sites

- Replicate along lower reach
- Watch and learn as we go

Thank you

Project Partners

Dr. Kasey Moran

Funders

Fisheries and Oceans Canada

Pêches et Océans Canada

Contact: Brenley.Yuan@dfo-mpo.gc.ca