Restoration Monitoring in the Nisqually River Delta

What have we learned, and where do we go from here?

Melanie Davis

U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit

Prepared For:

From Watersheds to Waves: Restoring Estuaries for Salmon Virtual Knowledge Exchange Workshop June 11, 2025

Recovery Phase	Ecosystem Conditions ^a	Plan Objectives	
Re-Building	Underutilized habitat available through habitat restoration and improved fish access to habitats.	Repopulate vacant, underutilized, and restored habitats.	
Local Adaptation	Habitat capable of supporting abundances that minimize risk of extinction and provide harvest.	Meet and exceed abundance thresholds for natural-origin spawners and reduce hatchery influence.	
Viable Population	Habitat restored and protected to allow full expression of abundance, productivity, life - history diversity, and spatial distribution.	Maintain a productive, resilient, spatially and temporally diverse population with minimal hatchery supplementation.	
^a Hatchery Scientific Review Group 2014			

Habitat Change Through Time

Life History and Food Web Pre- & Post-Restoration Ecology

Opportunity

- Capacity
- Realized function
- "BACI"-type study design

Monitoring

David et al. 2014, Ellings et al. 2016, Woo et al. 2018, Davis et al. 2018a

- Wild and hatchery fish diets
- Habitat mosaics
- Prey and refugia
- Delta residency
- Carrying capacity
- Growth and survival

Davis et al. 2018b, Davis et al. 2019a, Woo et al. 2019, Woo et al. 2021, Greene et al. 2021, Davis/Woo et al. 2024

Future Forecasting

- Sea-level rise and marsh accretion models
- Temperature models
- Hydrologic models
- Sediment/dam Management scenarios

Davis et al. 2019b, Davis et al. 2021, Moritsch et al. 2022, Grossman et al. 2022, Davis et al. *In Review*

Synthesis and Integration

- Cross-system analyses
- H-Integrated approaches
- Lessons learned
- Information sharing
- Identifying data needs

Success Criteria (Simenstad & Cordell 2000)

- Opportunity Potential
 - i.e., How much habitat is available?
- Foraging Capacity
 - i.e., Are there sufficient prey resources there?
- Realized Function
 - i.e., Are individuals using newly-available habitat?

Life History and Food Web Pre- & Post-Restoration Ecology

Opportunity

- Capacity
- Realized function
- "BACI"-type study design

Monitoring

David et al. 2014, Ellings et al. 2016, Woo et al. 2018, Davis et al. 2018a

- Wild and hatchery fish diets
- Habitat mosaics
- Prey and refugia
- Delta residency
- Carrying capacity
- Growth and survival

Davis et al. 2018b, Davis et al. 2019a, Woo et al. 2019, Woo et al. 2021, Greene et al. 2021, Davis/Woo et al. 2024

Future Forecasting

- Sea-level rise and marsh accretion models
- Temperature models
- Hydrologic models
- Sediment/dam Management scenarios

Davis et al. 2019b, Davis et al. 2021, Moritsch et al. 2022, Grossman et al. 2022, Davis et al. *In Review*

Synthesis and Integration

- Cross-system analyses
- H-Integrated approaches
- Lessons learned
- Information sharing
- Identifying data needs

Life History and Food Web Pre- & Post-Restoration Ecology

Opportunity

- Capacity
- Realized function
- "BACI"-type study design

Monitoring

David et al. 2014, Ellings et al. 2016, Woo et al. 2018, Davis et al. 2018a

- Wild and hatchery fish diets
- Habitat mosaics
- Prey and refugia
- Delta residency
- Carrying capacity
- Growth and survival

Davis et al. 2018b, Davis et al. 2019a, Woo et al. 2019, Woo et al. 2021, Greene et al. 2021, Davis/Woo et al. 2024

Future Forecasting

- Sea-level rise and marsh accretion models
- Temperature models
- Hydrologic models
- Sediment/dam Management scenarios

Davis et al. 2019b, Davis et al. 2021, Moritsch et al. 2022, Grossman et al. 2022, Davis et al. *In Review*

Synthesis and Integration

- Cross-system analyses
- H-Integrated approaches
- Lessons learned
- Information sharing
- Identifying data needs

MOSAICS: Marsh accretion model output

Model output: May

Life History and Food Web Pre- & Post-Restoration Ecology

Opportunity

- Capacity
- Realized function
- "BACI"-type study design

Monitoring

David et al. 2014, Ellings et al. 2016, Woo et al. 2018, Davis et al. 2018a

- Wild and hatchery fish diets
- Habitat mosaics
- Prey and refugia
- Delta residency
- Carrying capacity
- Growth and survival

Davis et al. 2018b, Davis et al. 2019a, Woo et al. 2019, Woo et al. 2021, Greene et al. 2021, Davis/Woo et al. 2024

Future Forecasting

- Sea-level rise and marsh accretion models
- Temperature models
- Hydrologic models
- Sediment/dam Management scenarios

Davis et al. 2019b, Davis et al. 2021, Moritsch et al. 2022, Grossman et al. 2022, Davis et al. *In Review*

Synthesis and Integration

- Cross-system analyses
- H-Integrated approaches
- Lessons learned
- Information sharing
- Identifying data needs

The Importance of H-Integration

"Considering the effects of one factor at a time (e.g. harvest, habitat, or hatchery management actions) on salmon population characteristics is more tractable from a technical standpoint, but such estimates of effects are sure to be wrong in most instances. Managers [are asked] to consider suites of habitat, harvest, and hatchery actions together, especially with a view towards how these factors interact..." – Puget Sound Technical Recovery Team (2003)

Figure 6.8 Example of the interactions among habitat, hatchery, and harvest management actions and their potential effects on the VSP parameters of a population. (PSTRT, 2003) page 37

Shared Strategy for Puget Sound: Puget Sound Salmon Recovery Plan

Application to Capital Restoration & Protection AVAILABILITY THERMAL CONDITIONS CONNECTIVITY SALINITY REGIMES QUALITY HABITAT LOSS CLIMATE **HABITAT RELATIVE** COMMERCIAL **FITNESS** RECREATIONAL PHOS **DEMOGRAPHIC HARVEST PROMOTING TRIBAL EFFICIENT DATA USE AND** STOCK-RECRUITMENT **COLLECTION**

Questions?

