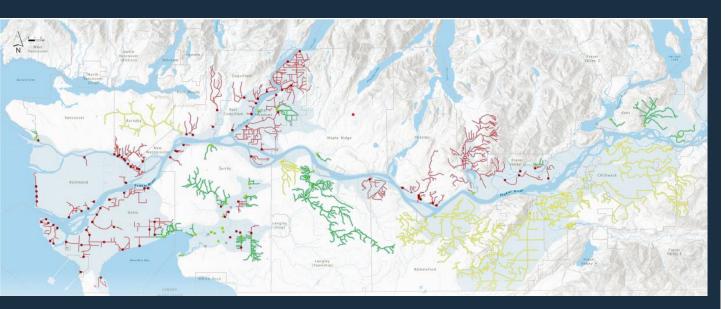
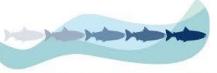


Fisheries and Oceans Canada




How Resilient Waters Started

- 160 Floodgates, 60 Pumpstations & 250 KM of dikes along the Fraser, aging and outdated
- Blocking 1500 km of important off-channel slough and stream salmon habitat (Watershed Watch, 2018)
- Loss of 85% of floodplain habitats (Finn et al. 2021)

BC Salmon Restoration and Innovation Fund
Fonds de restauration et d'innovation pour le saumon de la C-B

Adapting to Restoring Climate Salmon and Change their habitat Reconciliation Sustainable **Fixing Fraser** and Cultural **Economy Floodplains Preservation Protecting Agriculture** Communities and Food security

Fixing Fraser Floodplains

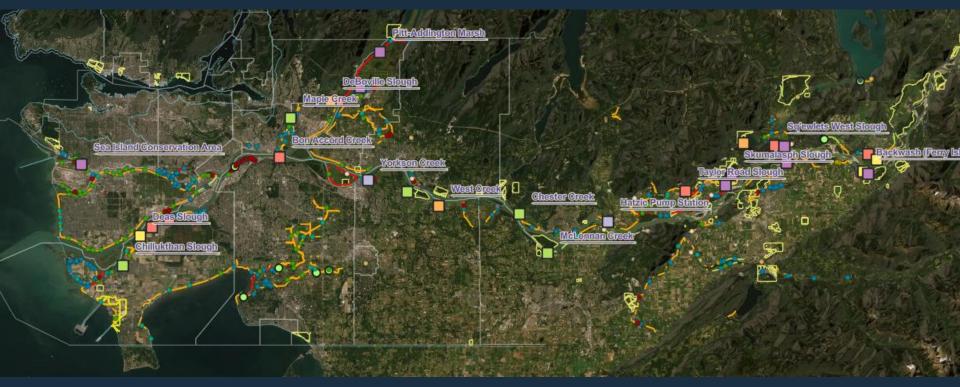
- Gateway and nursery for one of the largest and most diverse salmon populations in the world
- 4th largest port and 12th fastest growing region in NA
- Most productive and fertile agricultural land in BC
- 30 First Nations, 25 local governments, and 3 million people
- Climate change increasing and shifting flood risk type
- Prohibitively Expensive to upgrade flood infrastructure with status quo solutions = \$8-10 billion

Inequitable History of Flood Infrastructure

- Crucial overwintering nursery habitat for out-migrating juvenile salmon, especially [Harrison] Chinook
- Adjusting to salinity closer to estuary

Floodplain rearing of juvenile chinook salmon: evidence of enhanced growth and survival

T.R. Sommer, M.L. Nobriga, W.C. Harrell, W. Batham, and W.J. Kimmerer


Abstract: In this study, we provide evidence that the Yolo Bypass, the primary floodplain of the lower Sacramento River (California, U.S.A.), provides better rearing and migration habitat for juvenile chinook salmon (Oncorinnchus tehavytscha) than adjacent river channels. During 1998 and 1999, salmon increased in size substantially faster in the seasonally inundated agricultural floodplain than in the river, suggesting better growth rates. Similarly, coded-wire-tagged juveniles released in the floodplain were significantly larger at recapture and had higher apparent growth rates than those concurrently released in the river. Improved growth rates in the floodplain were significantly higher prey consumption, reflecting greater availability of drift invertebrates. Bioenergetic modeling suggested that feeding success was greater in the floodplain than in the river, despite increased metabolic costs of rearing in the

Environ Biol Fish (2008) 83:449-458 DOI 10.1007/s10641-008-9367-1

Ephemeral floodplain habitats provide best growth conditions for juvenile Chinook salmon in a California river

Carson A. Jeffres • Jeff J. Opperman • Peter B. Moyle 325

Identifying Restoration Opportunities: 2020-ongoing

www.resilientwaters.ca/map-data

26 high priority sites from Hope to Estuary

HOW WE'RE DOING IT

Collaborative Research

- Site Assessments of flood infrastructure at Priority Sites
 Pearson Ecological
- Colony Farm Floodgate
 Study UBC Salmon Lab
 (Zachary Sherker),
 Kwikwetlem FN, Metro
 Vancouver (2021-ongoing)
- Pumpstation and FishPassage Study 2024-2027

Site Assessments- Fish and WQ at 26 priority sites Report Cards over 3 years

Data freely accessible www.resilientwaters.ca/data

Habitat Report Card 2021

Taylor Road Slough	High Priority		
Type	Slough		
Flood Infrastructure	Top-hinged flood gate (very poor condition)		
Key Rights Holders and Stakeholders	Leg'armel First Nation Private Landowners North Nicomen Improvement District (Dike) Fraser Valley Regional District		
Waterbody Immediately Downstream	Nicomen Slough > Fraser River		
Upstream permanent barrier	Collapsed culvert at crossing		
UTM Coordinates at Mouth	10U 565677 5447690		
Dates visited	March 15-19; June 14-18; August 3-10		

Summary

- Consists of two ponds and a forested wetland surrounded by agricultural lands, immediately west of Lakahahmen Reserve (Leq'a-mel)
- Slough likely also connected to Nicomen Slough at upstream end during high water events prior to dike construction (1948)
- Flood gate is barely functional; gate has been repaired by local farmer and inlet to pipe is almost completely blocked by sediment. Dike is also in poor condition and was further damaged in November 2021 floods.
- Flood gate appears impassable under most conditions although Prickly sculpin and several invasive fish species occur inside the dike.
- . Culvert at farm crossing where reach TR1 and TR2 meet is blocked by beaver and impassable to fish
- With access from Nicomen Slough restored, Slough is likely to be used by chum fry in spring, by over wintering Coho from North Nicomen and Norrish Creek and upstream Nicomen <u>inhutaries</u>, and by other Cutthroat and Rainbow in spring and fall.

Restoration Opportunities

TR1

- · Extensive riparian plantings along south shore
- · Add unanchored large woody debris
- · Assess opening connection with TR3 under farm crossing

TR2

- Excavate accumulated sediment from pond where accessible with excavator.
- · Add unanchored large woody debris
- Replace culvert culverts under farm crossing with beaver proof guarded culvert
- · Extensive riparian plantings on both banks, maintaining a view of pond from house

Indicators

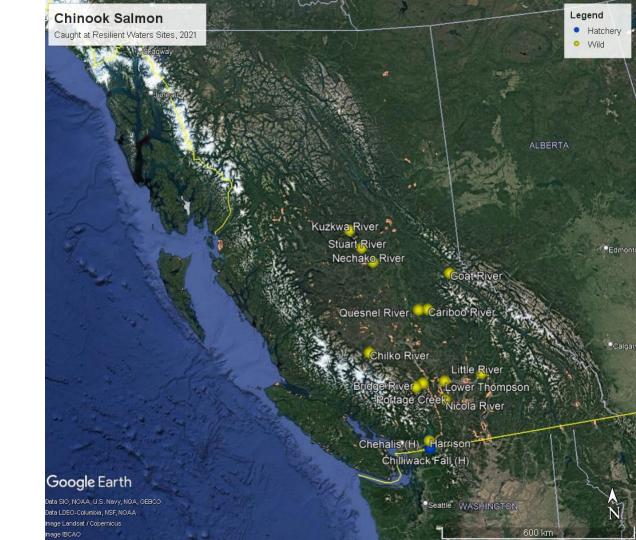
Indicator	Overall Top mounted flood gate, Intake partially blocked	
Current connection to Fraser River		
Accessible channel Length (current/potential)	9 1240	
Potential Salmonid Use	Chum, Coho, Chinook,	
Potential Species at Risk	Brassy Minnow	
Introduced Fish and Amphibians	High catch rates	
Riparian Condition	Mix of wide areas of native vegetation and areas with pasture to top of bank	
Habitat Complexity	Abundant aquatic vegetation Little woody debris	
Water Quality	>20 C for and DO<2 at night in August	
Potential for Habitat Restoration	High	

Species Documented

English Name	Halq'emeylem	Scientific Name	Status
Prickly Sculpin		Cattus asper	Indigenous
Threespine Stickleback	Socitor	Gasterosteus aculeatus	Indigenous
Largemouth Bass		Micropterus salgonides	Introduced
Pumpkinseed		Lepamis gibbasus	Introduced
Brown Catfish	Mictor.	Ameiurus nebulosus	Introduced
Carp	Scholáka	Cyprinus carpia	Introduced
Bullfrog	Modés	Rana catesbelana	introduced
Green Frog	and a second	Rana ciamitans	Introduced
Signal Crayfish	X371236	Pacifastacus leniusculus.	Indigenous

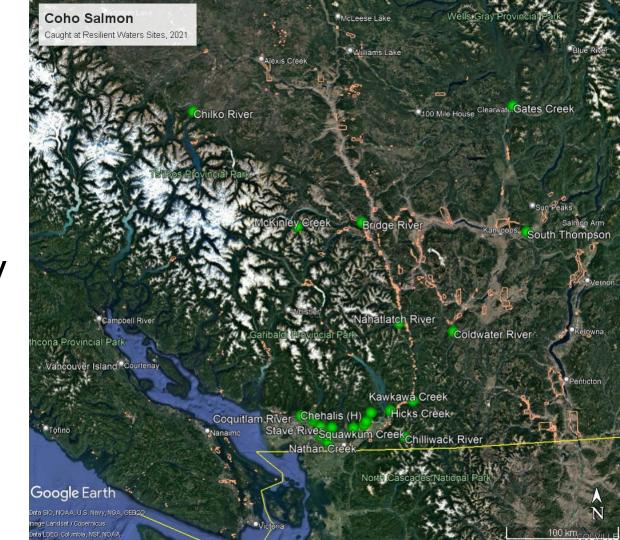
Halg'emeylem names provided by Carrielynn Victor, Avelsteony Consulting, Cheam

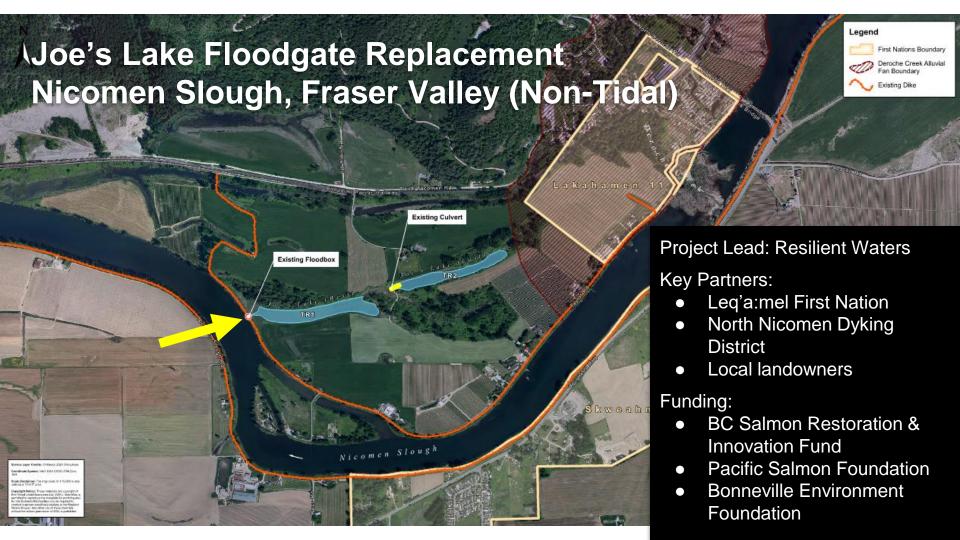
Neighbouring Sites



Genetic Fin Clip Analysis

~250 clips taken from high priority sites

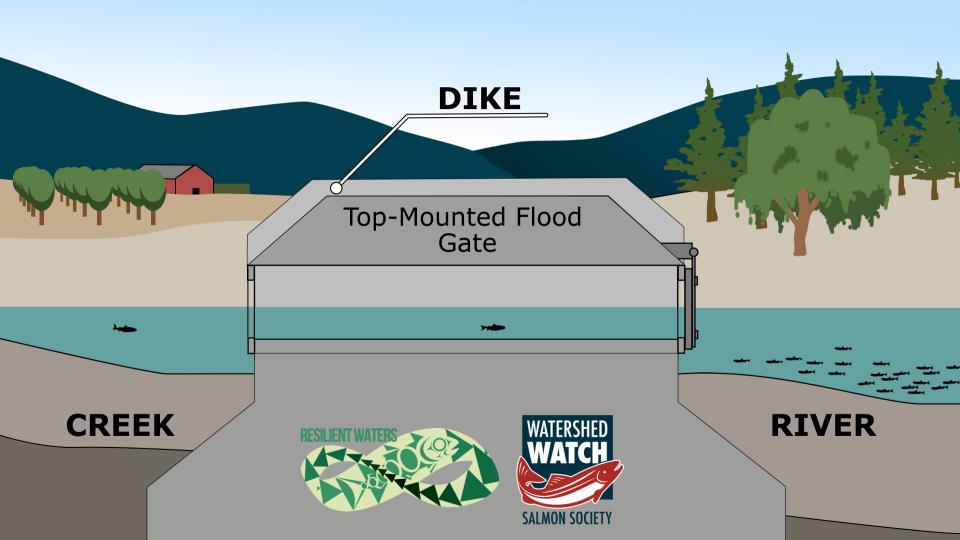

2021 Chinook – origin stream

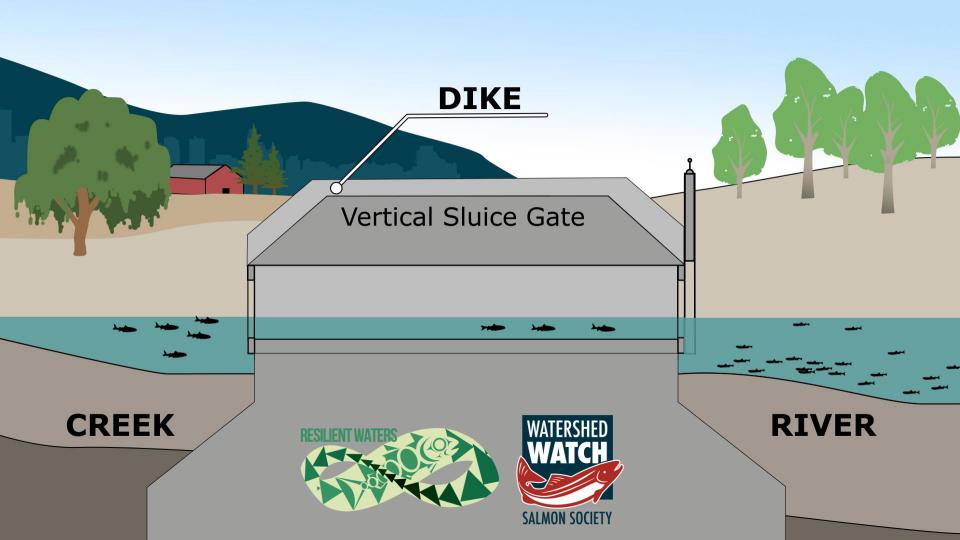


Genetic Fin Clip Analysis

~250 clips taken from high priority sites

2021 Coho – origin stream





- Unable to handle projected water increase from climate change
- Collects debris and garbage
- Prevents fish access to critical overwintering habitat

THE PROBLEM:

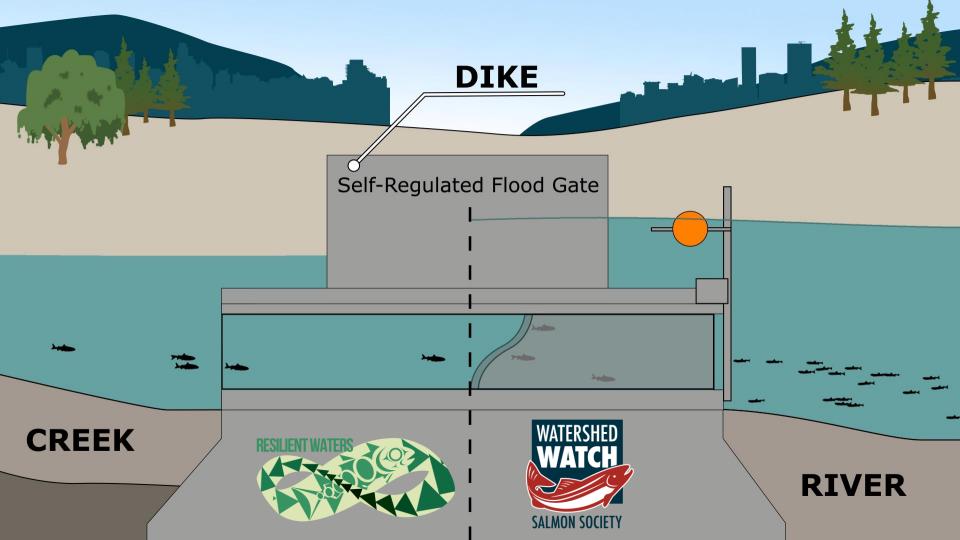
- Disconnected water flow creates higher water temperatures - fatal to salmon
- Restricted water flow causes decreased water quality, promoting the growth of invasive species and plant populations

- When flood risk is high, gate closes to protect the community
- Reduced flood risk helps to ensure food security for the community
- Improved water flow and exchange prevents growth of algae and invasive plant populations
- Increased wetland habitat for juvenile salmon, waterfowl and ecological resilience

Joe's Slough Floodgate Replacement Details

- Timeline ~ 4 years from funding application to construction completion
- Installed spring 2024, automated summer 2025 (solar panel / battery + controller)
- Cost = \$1 million
 - \$200K pre-construction (meetings, feasibility and modeling, engineering design, permitting) +
 - \$800K construction mainly cuz it involved ripping a dike apart and putting back together
 - o Many dikes were constructed in late 1800's or early 1900's by farmers, never know what you'll get
- Opened 5 hectares of slough habitat in high salmon value area Coho, Chum,
 Chinook, potential for further future connections
- Multi-partner effort / table that has led multi-million \$ funding restoration in the area
- Funded by BC Salmon Restoration Innovation Fund, Pacific Salmon Foundation,
 Bonneville Environment Fund

Fisheries and Oceans Canada


Tidal vs. Non-tidal Scenarios

Non-tidal

- more straight forward
- main vector of flood is freshet,
 once a year for sustained
 period (4-6 weeks)
- Solution = Vertical gate (can automate or manual close)

Tidal

- more complex
- tides = 2x daily flood + interacting with other potential vectors of flooding (e.g. Coquitlam River) causing variable and unpredictable conditions constantly
- Solution = Self-Regulating Tidegate (SRT) which there are many options to choose from, no obvious or agreed on go to

The Wild West of Self-Regulating Tide Gates

- Many different technologies and approaches
- Top-hinged, side-hinged, even vertical (not typical cuz of # of times opening and closing / day = wear)
- Water level trigger typically a float (no-power required), or sensor (power)
- Only 2 SRT's in whole Lower Mainland
 - 1 defunct Juel gate on Musqueam Creek
 - 1 functional Golden Harvest GH-850R at Colony Farm on Coquitlam River
- See Juel Tide gates youtube channel
- Retrofits easiest is chaining gate open. Yet to hear of an 'engineer approved' retrofit, but would be amazed to hear if one exists.

Lessons Learned - Making Floodgate replacements happen

- Willing and interested local government and First Nation priorities can vary, political cycles ebb and flow
- Solution needs to improve fish habitat + reduce flood risk + other benefits
- Funding programs are competitive and rarely prioritize multi-benefits, so cobbling things together (Washington's Floodplains by Design is a great exception to this rule, prioritizes multi-benefits)
- Typical full replacement = \$1 million CAD start to finish (based on 2 examples)
- Regulations not well understood or enforced (not mandatory to install fishfriendlier gate solutions)
- Best Practices are not standardized, little education in the sector about doing this in a multidisciplinary way to meet fish passage and flood mitigation needs
 - Very interested to further this, reach out if you have ideas
- Many options exist and very little information easily available about each
- Balancing ongoing maintenance, operations, initial costs

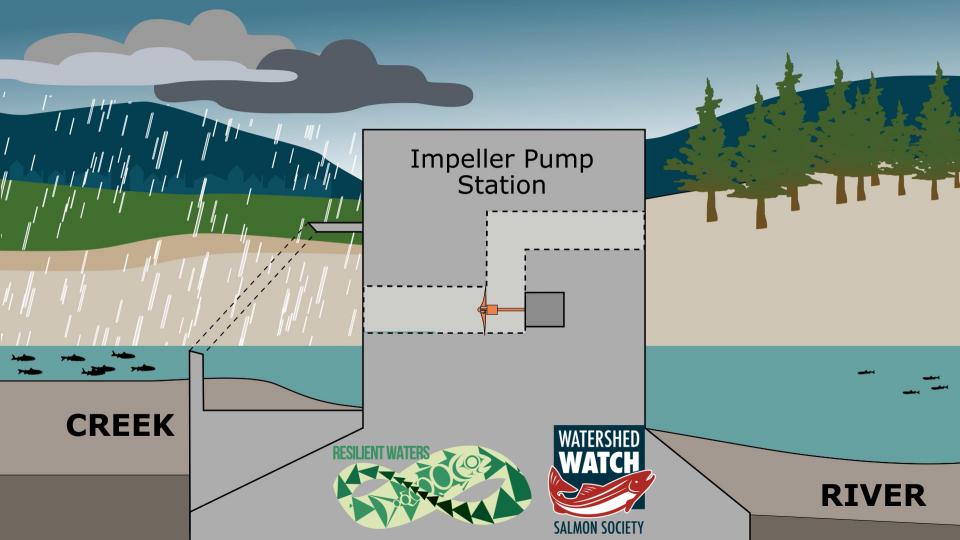
Once a floodgate is in...

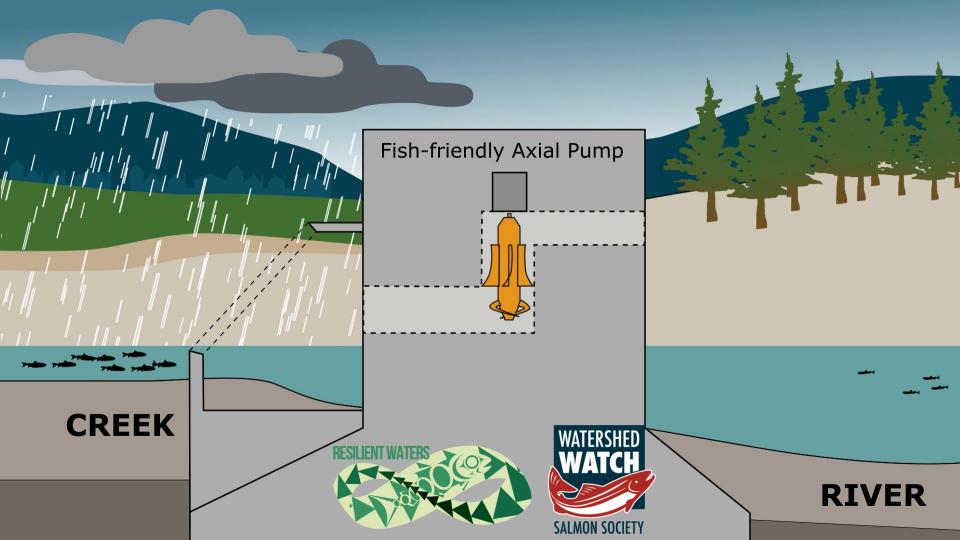
- Maintenance, monitoring, responsibility
 - ensuring debris / beavers don't impact closing and opening
 - who is checking it and when to make sure it's working as intended not just for floods but for fish too?

Operations

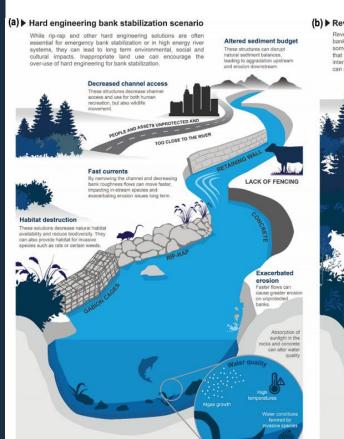
- o if manual who is going out to close if flooding is forecasted, open when flood recedes
- if automatic, do you have a way to know the system is working?
- if powered can install remote system (just installed at Joe's Lake floodgate, solar powered, controllable online)
- Might sound simple but many of these easy to overlook, especially for lower capacity governments

Pumpstation Study - 2024-2027





Fisheries and Oceans Canada



Advancing Best Practices

- Online Workshops and Webinars - Local and international experts
- Examples:
 - Bank Stabilization-NBS approaches (2024)
 - Farming Practices for Flood Resilience (2024)
 - Integrated Floodplain Management (2021)

(b) ► Revegetated and bio-engineered bank stabilization scenario Revegetation and bioengineering solutions can allow for longer term

Lower Fraser Floodplains Coalition

THE UNIVERSITY OF BRITISH COLUMBIA

School of Architecture + Landscape Architecture

Fisheries and Oceans Canada

